TY - JOUR
T1 - Mitochondrial uncoupling protein-2 mediates steatotic liver injury following ischemia/reperfusion
AU - Evans, Zachary P.
AU - Ellett, Justin D.
AU - Schmidt, Michael G.
AU - Schnellmann, Rick G.
AU - Chavin, Kenneth D.
PY - 2008/3/28
Y1 - 2008/3/28
N2 - Steatotic livers are not used for transplantation because they have a reduced tolerance for ischemic events with reduced ATP levels and greater levels of cellular necrosis, which ultimately result in total organ failure. Mitochondrial uncoupling protein-2 (UCP2) is highly expressed in steatotic livers and may be responsible for liver sensitivity to ischemia through mitochondrial and ATP regulation. To test this hypothesis, experiments were conducted in lean and steatotic (ob/ob), wild-type, and UCP2 knock-out mice subjected to total warm hepatic ischemia/reperfusion. Although ob/ob UCP2 knock-out mice and ob/ob mice have a similar initial phenotype, ob/ob UCP2 knock-out animal survival was 83% when compared with 30% in ob/ob mice 24 h after reperfusion. Serum alanine aminotransferase concentrations and hepatocellular necrosis were decreased in the ob/ob UCP2 knock-out mice when compared with ob/ob mice subjected to ischemia. Liver ATP levels were increased in the ob/ob UCP2 knock-out animals after reperfusion when compared with the ob/ob mice but remained below the concentrations from lean livers. Lipid peroxidation (thiobarbituric acid-reactive substances) increased after reperfusion most significantly in the steatotic groups, but the increase was not affected by UCP2 deficiency. These results reveal that UCP2 expression is a critical factor, which sensitizes steatotic livers to ischemic injury, regulating liver ATP levels after ischemia and reperfusion.
AB - Steatotic livers are not used for transplantation because they have a reduced tolerance for ischemic events with reduced ATP levels and greater levels of cellular necrosis, which ultimately result in total organ failure. Mitochondrial uncoupling protein-2 (UCP2) is highly expressed in steatotic livers and may be responsible for liver sensitivity to ischemia through mitochondrial and ATP regulation. To test this hypothesis, experiments were conducted in lean and steatotic (ob/ob), wild-type, and UCP2 knock-out mice subjected to total warm hepatic ischemia/reperfusion. Although ob/ob UCP2 knock-out mice and ob/ob mice have a similar initial phenotype, ob/ob UCP2 knock-out animal survival was 83% when compared with 30% in ob/ob mice 24 h after reperfusion. Serum alanine aminotransferase concentrations and hepatocellular necrosis were decreased in the ob/ob UCP2 knock-out mice when compared with ob/ob mice subjected to ischemia. Liver ATP levels were increased in the ob/ob UCP2 knock-out animals after reperfusion when compared with the ob/ob mice but remained below the concentrations from lean livers. Lipid peroxidation (thiobarbituric acid-reactive substances) increased after reperfusion most significantly in the steatotic groups, but the increase was not affected by UCP2 deficiency. These results reveal that UCP2 expression is a critical factor, which sensitizes steatotic livers to ischemic injury, regulating liver ATP levels after ischemia and reperfusion.
UR - http://www.scopus.com/inward/record.url?scp=43749104043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43749104043&partnerID=8YFLogxK
U2 - 10.1074/jbc.M706784200
DO - 10.1074/jbc.M706784200
M3 - Article
C2 - 18086675
AN - SCOPUS:43749104043
SN - 0021-9258
VL - 283
SP - 8573
EP - 8579
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 13
ER -