TY - JOUR
T1 - Mineralogical thallium geochemistry and isotope variations from igneous, metamorphic, and metasomatic systems
AU - Rader, Shelby T.
AU - Mazdab, Frank K.
AU - Barton, Mark D.
N1 - Funding Information:
This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1143953 and through the Hugh McKinstry Grant from the Society of Economic Geologists. We would like to thank Mark Baker for allowing the use of his lab facilities at the University of Arizona. Materials from the University of Arizona research ore deposit, mineralogy and petrology collections were used in this study. Additional samples were supplied from the personal teaching collection of one of the authors (FKM) and from the personal and thesis collections of several of our departmental colleagues. Caleb King is thanked for supplying samples from the Battle Mountain Region, Nevada. Benjamin Schumer is thanked for supplying Lengenbach samples for analysis. We thank Ken Domanik for his assistance with characterizing samples using the Cameca SX100 microprobe. We thank Dr. Jay Quade and Derek Hoffman for their helpful comments and suggestions on early drafts of this manuscript. Three anonymous reviewers and associate editor Edward M. Ripley provided advice and helpful comments, which led to substantive improvements to the manuscript.
Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/12/15
Y1 - 2018/12/15
N2 - This study presents new thallium (Tl) concentration and isotopic composition data for potassium feldspar (K-feldspar), micas, sulfides, and other minerals using solution multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS). The samples studied represent a diverse set of igneous, metamorphic, and metasomatic rock types. Purified separates of minerals anticipated to be Tl-bearing were analyzed; in many cases coexisting minerals were measured to examine the distribution of Tl and its isotopes between coexisting phases. This study is the first of its kind to document mineralogical controls on Tl chemical and isotopic fractionation. Thallium contents in rock-forming minerals and common sulfides vary from below detection limit (here, approximately 0.2 ppm Tl in the mineral utilizing an IsoProbe MC-ICP-MS) to 3200 ppm. In this present study, mica and feldspar samples can reach Tl concentrations well over 20 ppm, compared to only 0.7 ppm in average crust. In contrast, only 14 of 38 common sulfide samples contain Tl at levels above the detection limit. Measured Tl isotope ratios, reported as ε205Tl relative to the NIST 997 standard solution, range from −12.1 ± 0.6 to +18.0 ±1.4 (2σ). Most samples analyzed fall within the published range of ε205Tl (−20 to +15) (Nielsen et al., 2017). Although most sulfides show limited Tl enrichment, they display the highest ε205Tl values among coexisting minerals, with Fe-rich micas having the lowest ε205Tl values. The patterns in enrichment are best interpreted to reflect crystal chemical differences and the incompatible, dominantly lithophile nature of Tl. In turn, isotopic fractionation also reflects control by the bonding environment as well as redox conditions. The preferential distribution of Tl into micas and K-feldspar found here is consistent with the similarity in charge and ionic radius of Tl+ and K+. The higher ε205Tl values in sulfides agree with previous observations and theoretical studies showing the tendency of covalent bonds, high bond strengths, and high oxidation states to favor heavy isotopes. This work highlights important areas for future research regarding the natural weathering of Tl-bearing substrates, understanding regional cycling of Tl, and potential bioremediation of Tl contamination.
AB - This study presents new thallium (Tl) concentration and isotopic composition data for potassium feldspar (K-feldspar), micas, sulfides, and other minerals using solution multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS). The samples studied represent a diverse set of igneous, metamorphic, and metasomatic rock types. Purified separates of minerals anticipated to be Tl-bearing were analyzed; in many cases coexisting minerals were measured to examine the distribution of Tl and its isotopes between coexisting phases. This study is the first of its kind to document mineralogical controls on Tl chemical and isotopic fractionation. Thallium contents in rock-forming minerals and common sulfides vary from below detection limit (here, approximately 0.2 ppm Tl in the mineral utilizing an IsoProbe MC-ICP-MS) to 3200 ppm. In this present study, mica and feldspar samples can reach Tl concentrations well over 20 ppm, compared to only 0.7 ppm in average crust. In contrast, only 14 of 38 common sulfide samples contain Tl at levels above the detection limit. Measured Tl isotope ratios, reported as ε205Tl relative to the NIST 997 standard solution, range from −12.1 ± 0.6 to +18.0 ±1.4 (2σ). Most samples analyzed fall within the published range of ε205Tl (−20 to +15) (Nielsen et al., 2017). Although most sulfides show limited Tl enrichment, they display the highest ε205Tl values among coexisting minerals, with Fe-rich micas having the lowest ε205Tl values. The patterns in enrichment are best interpreted to reflect crystal chemical differences and the incompatible, dominantly lithophile nature of Tl. In turn, isotopic fractionation also reflects control by the bonding environment as well as redox conditions. The preferential distribution of Tl into micas and K-feldspar found here is consistent with the similarity in charge and ionic radius of Tl+ and K+. The higher ε205Tl values in sulfides agree with previous observations and theoretical studies showing the tendency of covalent bonds, high bond strengths, and high oxidation states to favor heavy isotopes. This work highlights important areas for future research regarding the natural weathering of Tl-bearing substrates, understanding regional cycling of Tl, and potential bioremediation of Tl contamination.
KW - Inter-mineral Tl partitioning
KW - Metasomatism
KW - Mineralogical thallium
KW - Solution multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS)
UR - http://www.scopus.com/inward/record.url?scp=85054457295&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054457295&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2018.09.019
DO - 10.1016/j.gca.2018.09.019
M3 - Article
AN - SCOPUS:85054457295
SN - 0016-7037
VL - 243
SP - 42
EP - 65
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -