MIMO-based jamming resilient communication in wireless networks

Qiben Yan, Huacheng Zeng, Tingting Jiang, Ming Li, Wenjing Lou, Y. Thomas Hou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

53 Scopus citations


Reactive jamming is considered the most powerful jamming attack as the attack efficiency is maximized while the risk of being detected is minimized. Currently, there are no effective anti-jamming solutions to secure OFDM wireless communications under reactive jamming attack. On the other hand, MIMO has emerged as a technology of great research interest in recent years mostly due to its capacity gain. In this paper, we explore the use of MIMO technology for jamming resilient OFDM communication, especially its capability to communicate against the powerful reactive jammer. We first investigate the jamming strategies and their impacts on the OFDM-MIMO receivers. We then present a MIMO-based anti-jamming scheme that exploits interference cancellation and transmit precoding capabilities of MIMO technology to turn a jammed non-connectivity scenario into an operational network. Our testbed evaluation shows the destructive power of reactive jamming attack, and also validates the efficacy and efficiency of our defense mechanisms.

Original languageEnglish (US)
Title of host publicationIEEE INFOCOM 2014 - IEEE Conference on Computer Communications
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages9
ISBN (Print)9781479933600
StatePublished - 2014
Externally publishedYes
Event33rd IEEE Conference on Computer Communications, IEEE INFOCOM 2014 - Toronto, ON, Canada
Duration: Apr 27 2014May 2 2014

Publication series

NameProceedings - IEEE INFOCOM
ISSN (Print)0743-166X


Other33rd IEEE Conference on Computer Communications, IEEE INFOCOM 2014
CityToronto, ON

ASJC Scopus subject areas

  • General Computer Science
  • Electrical and Electronic Engineering


Dive into the research topics of 'MIMO-based jamming resilient communication in wireless networks'. Together they form a unique fingerprint.

Cite this