Abstract
The new emphasis on Anti-Terrorism and Force Protection (AT/FP), for both shore and sea platform protection, has resulted in a need for infrared imager design and evaluation tools that demonstrate field performance against U.S. Navy AT/FP requirements. In the design of infrared imaging systems for target acquisition, a discrimination criterion is required for successful sensor realization. It characterizes the difficulty of the task being performed by the observer and varies for different target sets. This criterion is used in both assessment of existing infrared sensor and in the design of new conceptual sensors. We collected 12 small craft signatures (military and civilian) in the visible band during the day and the long-wave and midwave infrared spectra in both the day and the night environments. These signatures were processed to determine the targets' characteristic dimension and contrast. They were also processed to band limit the signature's spatial information content (simulating longer range), and a perception experiment was performed to determine the task difficulty N50 and V50). The results are presented and can be used for Navy and Coast Guard imaging infrared sensor design and evaluation.
Original language | English (US) |
---|---|
Pages (from-to) | 7345-7353 |
Number of pages | 9 |
Journal | Applied optics |
Volume | 46 |
Issue number | 30 |
DOIs | |
State | Published - Oct 20 2007 |
Externally published | Yes |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Engineering (miscellaneous)
- Electrical and Electronic Engineering