Mid-wave and long-wave infrared signature model and measurement of power lines against atmospheric path radiance

Patrick Leslie, Orges Furxhi, Robert Short, Robert Grimming, Anne Lautzenheiser, Tex Longcor, Ronald Driggers

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The signal to noise ratio and corresponding visibility of power cables as seen by military aircrafts is critical for crew safety. During low altitude operations, rotorcraft systems must be able to navigate these power lines during flight. Many of these military missions are flown at night which means the reflective bands including the visible, near infrared and short-wave infrared do not provide sufficient light. However, the emissive bands of the mid-wave infrared (MWIR) and long-wave infrared (LWIR) can be used to distinguish the location of these wires. LWIR sensors are typically used for pilotage applications. In both the LWIR and MWIR, the signal to noise depends on the wire emissivity and reflectivity as well as the ground and sky background path radiance. The signal to noise ratio is strongly dependent on the elevation of the viewing angle. In this paper, we model the signal to noise ratio as a function of elevation viewing angle using wire reflectivity and emissivity as well as MODTRAN calculations for path radiance. We also take MWIR and LWIR measurements to compare these two bands to the modelling results. We provide a summary of both model and measurements and make conclusions.

Original languageEnglish (US)
Pages (from-to)563-575
Number of pages13
JournalOptics Express
Volume30
Issue number1
DOIs
StatePublished - Jan 3 2022

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Mid-wave and long-wave infrared signature model and measurement of power lines against atmospheric path radiance'. Together they form a unique fingerprint.

Cite this