Mid-Cretaceous-Recent crustal evolution in the central Coast orogen, British Columbia and southeastern Alaska

Maria Luisa Crawford, Keith A. Klepeis, George E. Gehrels, Jennifer Lindline

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


The Coast orogen of western coastal British Columbia and southeastern Alaska is one of the largest batholithic belts in the world. This paper addresses the structure and composition of the crust in the central part of this orogen, as well as the history of its development since the mid-Cretaceous. The core of the orogen consists of two belts of metamorphic and plutonic rocks: the western metamorphic and thick-skinned thrust belt comprising 105-90-Ma plutons and their metamorphic country rocks, and the Coast Plutonic Complex on the east, with large volumes of mainly Paleogene magmatic rocks and their high-temperature gneissic host rocks. These two belts are separated by the Coast shear zone, which forms the western boundary of a Paleogene magmatic arc. This shear zone is subvertical, up to 5 km wide, and has been seismically imaged to extend to and offset the Moho. Lithologic units west of the Coast shear zone record contractional deformation and crustal thickening by thrusting and magma emplacement in the mid-Cretaceous. To the east, the Coast Plutonic Complex records regional contraction that evolves to regional extension and coeval uplift and exhumation after ca. 65 Ma. Igneous activity in the Complex formed a Paleogene batholith and gave rise to high crustal temperatures, abundant migmatite and, as a result, considerable strain localization during deformation. In both belts, during each stage of the orogeny, crustal-scale deformation enabled and assisted magma transport and emplacement. In turn, the presence of magma, as well as its thermal effects in the crust, facilitated the deformation. After 50 Ma, the style of crustal evolution changed to one dominated by periods of extension oriented approximately perpendicular to the orogen. The extension resulted in tilting of large and small crustal blocks as well as intra-plate type magmatic activity across the orogen. Seismic-refl ection and refraction studies show that the crust of this orogen is unusually thin, probably due to the periods of orogen-perpendicular stretching. Magmatic activity west of the Coast shear zone in the Late Oligocene and Miocene was related to one period of orogen-parallel transtension along the margin. Small-scale, mafi c, mantle-derived volcanic activity continues in the region today. The change from convergence to translation and extension is related to a major plate reorganization in the Pacifi c that led to a change from subduction of an oceanic plate to northwestward translation of the Pacifi c plate along the northwest coast of North America. Although it has been proposed that this orogen is the site of major (up to 4000 km) pre-Eocene northward terrane translation, there is little evidence for such large-scale displacement or for the kind of discontinuity in the geological record that such displacement would entail.

Original languageEnglish (US)
Pages (from-to)97-124
Number of pages28
JournalSpecial Paper of the Geological Society of America
StatePublished - 2009

ASJC Scopus subject areas

  • Geology


Dive into the research topics of 'Mid-Cretaceous-Recent crustal evolution in the central Coast orogen, British Columbia and southeastern Alaska'. Together they form a unique fingerprint.

Cite this