Abstract
A detailed analysis of the optical and transport properties of semiconductor superlattices in the high-field regime is presented. Electronic Bloch oscillations and the resulting terahertz emission signals are computed including phonon damping in the presence of the electric field. The modifications of the phonon-induced terahertz signal decay are analyzed including the movement of the carriers in the field (intracollisional field effect). For elevated fields it is shown that the interplay between electric field and electron-phonon interaction leads to resonance structures in the terahertz damping rate.
Original language | English (US) |
---|---|
Pages (from-to) | 13799-13807 |
Number of pages | 9 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 55 |
Issue number | 20 |
DOIs | |
State | Published - 1997 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics