TY - JOUR
T1 - Microscale speciation of arsenic and iron in ferric-based sorbents subjected to simulated landfill conditions
AU - Root, Robert A.
AU - Fathordoobadi, Sahar
AU - Alday, Fernando
AU - Ela, Wendell P
AU - Chorover, Jon
PY - 2013/11/19
Y1 - 2013/11/19
N2 - During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the toxicity characteristic leaching procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 days, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially coprecipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75-81% of As(V) was reduced to As(III), and 53-68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multienergy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide coprecipitate formation.
AB - During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the toxicity characteristic leaching procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 days, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially coprecipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75-81% of As(V) was reduced to As(III), and 53-68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multienergy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide coprecipitate formation.
UR - http://www.scopus.com/inward/record.url?scp=84888210945&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888210945&partnerID=8YFLogxK
U2 - 10.1021/es402083h
DO - 10.1021/es402083h
M3 - Article
C2 - 24102155
AN - SCOPUS:84888210945
SN - 0013-936X
VL - 47
SP - 12992
EP - 13000
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 22
ER -