MicroRNA-29 differentially mediates preeclampsia-dysregulated cellular responses to cytokines in female and male fetal endothelial cells

Chi Zhou, Colman Freel, Olivia Mills, Xin Ran Yang, Qin Yan, Jing Zheng

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Abstract: Preeclampsia (PE) differentially impairs female and male fetal endothelial cell function, which is associated with an increased risk of adult-onset cardiovascular disorders in children born to mothers with PE. However, the underlying mechanisms are poorly defined. We hypothesize that dysregulation of microRNA-29a-3p and 29c-3p (miR-29a/c-3p) in PE disturbs gene expression and cellular responses to cytokines in fetal endothelial cells in a fetal sex-dependent manner. RT-qPCR analysis of miR-29a/c-3p was performed on female and male unpassaged (P0) human umbilical vein endothelial cells (HUVECs) from normotensive (NT) pregnancies and PE. Bioinformatic analysis of an RNA-seq dataset was performed to identify PE-dysregulated miR-29a/c-3p target genes in female and male P0-HUVECs. Gain- and loss-of-function assays were conducted to determine the effects of miR-29a/c-3p on endothelial monolayer integrity and proliferation in response to transforming growth factor-β1 (TGFβ1) and tumour necrosis factor-α (TNFα) in NT and PE HUVECs at passage 1. We observed that PE downregulated miR-29a/c-3p in male and female P0-HUVECs. PE dysregulated significantly more miR-29a/c-3p target genes in female vs. male P0-HUVECs. Many of these PE-differentially dysregulated miR-29a/c-3p target genes are associated with critical cardiovascular diseases and endothelial function. We further demonstrated that miR-29a/c-3p knockdown specifically recovered the PE-abolished TGFβ1-induced strengthening of endothelial monolayer integrity in female HUVECs, while miR-29a/c-3p overexpression specifically enhanced the TNFα-promoted cell proliferation in male PE HUVECs. In conclusion, PE downregulates miR-29a/c-3p expression and differentially dysregulates miR-29a/c-3p target genes associated with cardiovascular diseases and endothelial function in female and male fetal endothelial cells, possibly contributing to the fetal sex-specific endothelial dysfunction observed in PE. (Figure presented.). Key points: Preeclampsia differentially impairs female and male fetal endothelial cell function in responses to cytokines. Pro-inflammatory cytokines are elevated in maternal circulation during pregnancy in preeclampsia. MicroRNAs are critical regulators of endothelial cell function during pregnancy. We have previously reported that preeclampsia downregulated microRNA-29a-3p and 29c-3p (miR-29a/c-3p) in primary fetal endothelial cells. However, it is unknown if PE differentially dysregulates the expression of miR-29a/c-3p in female and male fetal endothelial cells. We show that preeclampsia downregulates miR-29a/c-3p in male and female HUVECs and preeclampsia dysregulates cardiovascular disease- and endothelial function-associated miR-29a/c-3p target genes in HUVECs in a fetal sex-specific manner. MiR-29a/c-3p differentially mediate cell responses to cytokines in female and male fetal endothelial cells from preeclampsia. We have revealed fetal sex-specific dysregulation of miR-29a/c-3p target genes in fetal endothelial cells from preeclampsia. This differential dysregulation may contribute to fetal sex-specific endothelial dysfunction in offspring born to preeclamptic mothers.

Original languageEnglish (US)
Pages (from-to)3631-3645
Number of pages15
JournalJournal of Physiology
Volume601
Issue number16
DOIs
StatePublished - Aug 15 2023

Keywords

  • cytokines
  • fetal endothelial function
  • microRNA-29
  • preeclampsia
  • sexual dimorphisms

ASJC Scopus subject areas

  • Physiology

Fingerprint

Dive into the research topics of 'MicroRNA-29 differentially mediates preeclampsia-dysregulated cellular responses to cytokines in female and male fetal endothelial cells'. Together they form a unique fingerprint.

Cite this