Microbial degradation of chlorinated dioxins

Research output: Contribution to journalReview articlepeer-review

117 Scopus citations


Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were introduced into the biosphere on a large scale as by-products from the manufacture of chlorinated phenols and the incineration of wastes. Due to their high toxicity they have been the subject of great public and scientific scrutiny. The evidence in the literature suggests that PCDD/F compounds are subject to biodegradation in the environment as part of the natural chlorine cycle. Lower chlorinated dioxins can be degraded by aerobic bacteria from the genera of Sphingomonas, Pseudomonas and Burkholderia. Most studies have evaluated the cometabolism of monochlorinated dioxins with unsubstituted dioxin as the primary substrate. The degradation is usually initiated by unique angular dioxygenases that attack the ring adjacent to the ether oxygen. Chlorinated dioxins can also be attacked cometabolically under aerobic conditions by white-rot fungi that utilize extracellular lignin degrading peroxidases. Recently, bacteria that can grow on monochlorinated dibenzo-p-dioxins as a sole source of carbon and energy have also been characterized (Pseudomonas veronii). Higher chlorinated dioxins are known to be reductively dechlorinated in anaerobic sediments. Similar to PCB and chlorinated benzenes, halorespiring bacteria from the genus Dehalococcoides are implicated in the dechlorination reactions. Anaerobic sediments have been shown to convert tetrachloro- to octachlorodibenzo-p-dioxins to lower chlorinated dioxins including monochlorinated congeners. Taken as a whole, these findings indicate that biodegradation is likely to contribute to the natural attenuation processes affecting PCDD/F compounds.

Original languageEnglish (US)
Pages (from-to)1005-1018
Number of pages14
Issue number6
StatePublished - Apr 2008


  • Biodegradation
  • Biotransformation
  • Dechlorination
  • Polychlorinated dibenzodioxins
  • Polychlorinated furans

ASJC Scopus subject areas

  • Environmental Engineering
  • General Chemistry
  • Environmental Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Microbial degradation of chlorinated dioxins'. Together they form a unique fingerprint.

Cite this