Micro-chaotic behavior of digitally controlled machines

Eniko Enikov, Gabor Stepan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The desired stationary motions of machines are often unstable. Human operator or computer control may be needed to stabilize these machines. An important common feature of both analog and digital controllers, is the time delay which is introduced into the system. Even when these delayed systems should be stable, the experiments show small stochastic oscillations around the desired motion. In case of the stabilization of Ein inverted pendulum, the analysis of the equation of motion shows that chaotic vibrations occur around the equilibrium even when stochastic effects related to human control are not present. In advanced design work of digitally controlled machines, it is vital to know the characteristics of this chaotic behavior. The estimation of the distribution of vibration amplitudes and the frequency range should be available at the design stage. This initiates the analysis of the so-called micro-chaos or;z-chaos.

Original languageEnglish (US)
Title of host publication15th Biennial Conference on Mechanical Vibration and Noise - Vibration of Nonlinear, Random, and Time-Varying Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages399-406
Number of pages8
ISBN (Electronic)9780791817186
DOIs
StatePublished - 1995
EventASME 1995 Design Engineering Technical Conferences, DETC 1995, collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium - Boston, United States
Duration: Sep 17 1995Sep 20 1995

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3A-1995

Conference

ConferenceASME 1995 Design Engineering Technical Conferences, DETC 1995, collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium
Country/TerritoryUnited States
CityBoston
Period9/17/959/20/95

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Micro-chaotic behavior of digitally controlled machines'. Together they form a unique fingerprint.

Cite this