Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria

Paul Carini, Angelicque E. White, Emily O. Campbell, Stephen J. Giovannoni

Research output: Contribution to journalArticlepeer-review

114 Scopus citations

Abstract

The oxygenated surface waters of the world's oceans are supersaturated with methane relative to the atmosphere, a phenomenon termed the 'marine methane paradox'. The production of methylphosphonic acid (MPn) by marine archaea related to Nitrosopumilus maritimus and subsequent decomposition of MPn by phosphate-starved bacterioplankton may partially explain the excess methane in surface waters. Here we show that Pelagibacterales sp. strain HTCC7211, an isolate of the SAR11 clade of marine α-proteobacteria, produces methane from MPn, stoichiometric to phosphorus consumption, when starved for phosphate. Gene transcripts encoding phosphonate transport and hydrolysis proteins are upregulated under phosphate limitation, suggesting a genetic basis for the methanogenic phenotype. Strain HTCC7211 can also use 2-aminoethylphosphonate and assorted phosphate esters for phosphorus nutrition. Despite strain-specific differences in phosphorus utilization, these findings identify Pelagibacterales bacteria as a source of biogenic methane and further implicate phosphate starvation of chemoheterotrophic bacteria in the long-observed methane supersaturation in oxygenated waters.

Original languageEnglish (US)
Article number4346
JournalNature communications
Volume5
DOIs
StatePublished - Jul 7 2014
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria'. Together they form a unique fingerprint.

Cite this