Metal-insulator transitions and electron-phonon interactions in organic conductors

Kim Chau Ung, S. Mazumdar, D. K. Campbell, H. Q. Lin

Research output: Contribution to journalArticlepeer-review

Abstract

Commensurate 1/4 and 1/3-filled bands in which the electrons are coupled to both intersite phonons and intramolecular vibrations are investigated. Unlike in the 1/2-filled band, the bond order wave and the charge density wave coxexist and interact cooperatively for all values of the two electron-phonon coupling constants. In spite of the coexistence of the two kinds of density waves, solitons have charges that are rational fractions. The relevance of the cooperative interaction in non-half-filled bands to the metal-insulator transitions in segregated stack charge-transfer solids is discussed.

Original languageEnglish (US)
Pages (from-to)4660-4665
Number of pages6
JournalSynthetic Metals
Volume57
Issue number2-3
DOIs
StatePublished - Apr 19 1993

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Metal-insulator transitions and electron-phonon interactions in organic conductors'. Together they form a unique fingerprint.

Cite this