Abstract
Mitochondria generate second messengers, such as H2O 2, that are involved in the redox regulation of cell signalling and their function is regulated by several cytosolic signalling pathways. IIS [insulin/IGF1 (insulin-like growth factor 1) signalling] in the brain proceeds mainly through the PI3K (phosphatidylinositol 3-kinase)-Akt (protein kinase B) pathway, which is involved in the regulation of synaptic plasticity and neuronal survival via the maintenance of the bioenergetic and metabolic capacities of mitochondria. Conversely, the JNK (c-Jun N-terminal kinase) pathway is induced by increased oxidative stress and JNK translocation to the mitochondrion results in impairment of energy metabolism. Moreover, IIS and JNK signalling interact with and antagonize each other. This review focuses on functional outcomes of a metabolic triad that entails the co-ordination of mitochondrial function (energy transducing and redox regulation), IIS and JNK signalling, in the aging brain and in neurodegenerative disorders, such as Alzheimer's disease.
Original language | English (US) |
---|---|
Pages (from-to) | 101-105 |
Number of pages | 5 |
Journal | Biochemical Society transactions |
Volume | 41 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2013 |
Externally published | Yes |
Keywords
- Brain aging
- C-Jun N-terminal kinase (JNK)
- Energy metabolism
- Insulin/insulin-like growth factor-1 signalling
- Mitochondrion
- Neurodegeneration
ASJC Scopus subject areas
- Biochemistry