MetaboDirect: an analytical pipeline for the processing of FT-ICR MS-based metabolomic data

Christian Ayala-Ortiz, Nathalia Graf-Grachet, Viviana Freire-Zapata, Jane Fudyma, Gina Hildebrand, Roya AminiTabrizi, Cristina Howard-Varona, Yuri E. Corilo, Nancy Hess, Melissa B. Duhaime, Matthew B. Sullivan, Malak M. Tfaily

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Background: Microbiomes are now recognized as the main drivers of ecosystem function ranging from the oceans and soils to humans and bioreactors. However, a grand challenge in microbiome science is to characterize and quantify the chemical currencies of organic matter (i.e., metabolites) that microbes respond to and alter. Critical to this has been the development of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which has drastically increased molecular characterization of complex organic matter samples, but challenges users with hundreds of millions of data points where readily available, user-friendly, and customizable software tools are lacking. Results: Here, we build on years of analytical experience with diverse sample types to develop MetaboDirect, an open-source, command-line-based pipeline for the analysis (e.g., chemodiversity analysis, multivariate statistics), visualization (e.g., Van Krevelen diagrams, elemental and molecular class composition plots), and presentation of direct injection high-resolution FT-ICR MS data sets after molecular formula assignment has been performed. When compared to other available FT-ICR MS software, MetaboDirect is superior in that it requires a single line of code to launch a fully automated framework for the generation and visualization of a wide range of plots, with minimal coding experience required. Among the tools evaluated, MetaboDirect is also uniquely able to automatically generate biochemical transformation networks (ab initio) based on mass differences (mass difference network-based approach) that provide an experimental assessment of metabolite connections within a given sample or a complex metabolic system, thereby providing important information about the nature of the samples and the set of microbial reactions or pathways that gave rise to them. Finally, for more experienced users, MetaboDirect allows users to customize plots, outputs, and analyses. Conclusion: Application of MetaboDirect to FT-ICR MS-based metabolomic data sets from a marine phage-bacterial infection experiment and a Sphagnum leachate microbiome incubation experiment showcase the exploration capabilities of the pipeline that will enable the research community to evaluate and interpret their data in greater depth and in less time. It will further advance our knowledge of how microbial communities influence and are influenced by the chemical makeup of the surrounding system. The source code and User’s guide of MetaboDirect are freely available through (https://github.com/Coayala/MetaboDirect) and (https://metabodirect.readthedocs.io/en/latest/), respectively. [MediaObject not available: see fulltext.].

Original languageEnglish (US)
Article number28
JournalMicrobiome
Volume11
Issue number1
DOIs
StatePublished - Dec 2023

Keywords

  • Biochemical networks
  • FT-ICR MS
  • Metabolites
  • Organic matter

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)

Fingerprint

Dive into the research topics of 'MetaboDirect: an analytical pipeline for the processing of FT-ICR MS-based metabolomic data'. Together they form a unique fingerprint.

Cite this