Mesoporous TiO2-SiO2 adsorbent for ultra-deep desulfurization of organic-S at room temperature and atmospheric pressure

Bin Qin, Yuesong Shen, Boyang Xu, Shemin Zhu, Peiwen Li, Youlin Liu

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Ultra-deep desulfurization is a major requirement for upgrading the quality of fuel and power sources for fuel-cells. A series of mesoporous TiO2-SiO2 adsorbents were prepared and investigated for ultra-deep adsorption of benzothiophene (BT) and dibenzothiophene (DBT) from model fuel at ambient conditions. The adsorbents were characterized via SEM, XRD, N2-BET, FT-IR and NH3-TPD techniques. The results revealed that the adsorbent containing 40 wt% silica achieved the desulfurization efficiency higher than 99% when the initial sulfur concentration in the model fuel was 550 ppm. The high desulfurization performance of the adsorbent was attributed to its large specific surface and surface acidity. It also achieved a high sulfur adsorption capacity of 7.1 mg g-1 in a fixed-bed test, while its static saturated sulfur capacity was 13.7 mg g-1. The order of selectivity towards the adsorption of different organic sulfurs was DBT > BT&DBT > BT. The kinetics of the adsorption of organic sulfur was studied and the results indicated that the pseudo-second order model appropriately fitted the kinetics data. Furthermore, the used adsorbent can be easily regenerated and the desulphurization efficiency of the recovered adsorbent after five regeneration cycles was still maintained at 94.5%.

Original languageEnglish (US)
Pages (from-to)7579-7587
Number of pages9
JournalRSC Advances
Volume8
Issue number14
DOIs
StatePublished - 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Mesoporous TiO2-SiO2 adsorbent for ultra-deep desulfurization of organic-S at room temperature and atmospheric pressure'. Together they form a unique fingerprint.

Cite this