TY - JOUR
T1 - Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines
AU - Somers-Edgar, Tiffany J.
AU - Taurin, Sebastien
AU - Larsen, Lesley
AU - Chandramouli, Anupama
AU - Nelson, Mark A.
AU - Rosengren, Rhonda J.
N1 - Funding Information:
Acknowledgments This work was supported by a grant from the Breast Cancer Research Trust (RJR) and a University of Otago Postgraduate Scholarship (TJS-E).
PY - 2011/2
Y1 - 2011/2
N2 - Summary: Estrogen receptor (ER)-negative breast cancer is an aggressive form that currently requires more drug treatment options. Thus, we have further modified cyclohexanone derivatives of curcumin and examined them for cytotoxicity towards ER-negative human breast cancer cells. Two of the analogs screened elicited increased cytotoxic potency compared to curcumin and other previously studied derivatives. Specifically, 2,6-bis(pyridin-3-ylmethylene)- cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91) elicited EC50 values of 1.54 and 1.10 μM, respectively, in MDA-MB-231 cells and EC50 values of 0.51 and 0.23 in SKBr3 cells. All other new compounds examined were less potent than curcumin, which elicited EC50 values of 7.6 and 2.4 μM in MDA-MB-231 and SKBr3 cells, respectively. Mechanistic analyses demonstrated that RL90 and RL91 significantly induced G2/M-phase cell cycle arrest and apoptosis. RL90 and RL91 also modulated the expression of key cell signaling proteins, specifically, in SKBr3 cells, protein levels of Her-2, Akt, and NFκB were decreased in a time-dependent manner, while activity of stress kinases JNK1/2 and P38 MAPK were increased. Signaling events in MDA-MB-231 cells were differently implicated, as EGFR protein levels were decreased and activity of GSK-3β transiently decreased, while β-catenin protein level and activity of P38 MAPK, Akt, and JNK1/2 were transiently increased. In conclusion replacement of the phenyl group of cyclohexanone derived curcumin derivatives with heterocyclic rings forms a class of second-generation analogs that are more potent than both curcumin and other derivatives. These new derivatives provide a platform for the further development of drugs for the treatment of ER-negative breast cancer.
AB - Summary: Estrogen receptor (ER)-negative breast cancer is an aggressive form that currently requires more drug treatment options. Thus, we have further modified cyclohexanone derivatives of curcumin and examined them for cytotoxicity towards ER-negative human breast cancer cells. Two of the analogs screened elicited increased cytotoxic potency compared to curcumin and other previously studied derivatives. Specifically, 2,6-bis(pyridin-3-ylmethylene)- cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91) elicited EC50 values of 1.54 and 1.10 μM, respectively, in MDA-MB-231 cells and EC50 values of 0.51 and 0.23 in SKBr3 cells. All other new compounds examined were less potent than curcumin, which elicited EC50 values of 7.6 and 2.4 μM in MDA-MB-231 and SKBr3 cells, respectively. Mechanistic analyses demonstrated that RL90 and RL91 significantly induced G2/M-phase cell cycle arrest and apoptosis. RL90 and RL91 also modulated the expression of key cell signaling proteins, specifically, in SKBr3 cells, protein levels of Her-2, Akt, and NFκB were decreased in a time-dependent manner, while activity of stress kinases JNK1/2 and P38 MAPK were increased. Signaling events in MDA-MB-231 cells were differently implicated, as EGFR protein levels were decreased and activity of GSK-3β transiently decreased, while β-catenin protein level and activity of P38 MAPK, Akt, and JNK1/2 were transiently increased. In conclusion replacement of the phenyl group of cyclohexanone derived curcumin derivatives with heterocyclic rings forms a class of second-generation analogs that are more potent than both curcumin and other derivatives. These new derivatives provide a platform for the further development of drugs for the treatment of ER-negative breast cancer.
KW - Apoptosis
KW - Curcumin derivatives
KW - Her-2
KW - MDA-MB-231
KW - SKBr3
UR - http://www.scopus.com/inward/record.url?scp=79151481328&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79151481328&partnerID=8YFLogxK
U2 - 10.1007/s10637-009-9339-0
DO - 10.1007/s10637-009-9339-0
M3 - Article
C2 - 19816657
AN - SCOPUS:79151481328
SN - 0167-6997
VL - 29
SP - 87
EP - 97
JO - Investigational New Drugs
JF - Investigational New Drugs
IS - 1
ER -