TY - JOUR
T1 - Mechanisms and pathophysiological implications of sinusoidal endothelial cell gap formation following treatment with galactosamine/endotoxin in mice
AU - Ito, Yoshiya
AU - Abril, Edward R.
AU - Bethea, Nancy W.
AU - McCuskey, Margaret K.
AU - Cover, Cathleen
AU - Jaeschke, Hartmut
AU - McCuskey, Robert S.
PY - 2006
Y1 - 2006
N2 - Neutrophil extravasation from sinusoids is a critical step for acute inflammatory tissue injury. However, the role of sinusoidal endothelial cells (SECs) in this process remains unclear. Matrix metalloproteinases (MMPs) have been shown to involve gap formation in SECs in several liver diseases. Therefore, the present study examined SEC modifications elicited by galactosamine (Gal)/endotoxin (ET). Treatment of male C3Heb/FeJ mice with Gal/ET or Gal/TNF caused the formation of numerous gaps in SECs at 4 h when no neutrophil extravasation occurred. Six hours after Gal/ET or Gal/TNF treatment, blood elements started to penetrate to the extrasinusoidal space through large gaps. Treatment with ET alone caused sinusoidal neutrophil accumulation but no gap formation, neutrophil extravasation, or hemorrhage. Gal/ET treatment increased hepatic MMP-2 and MMP-9 mRNA expression (6.7- and 11-fold, respectively). Pretreatment with 2-[(4-biphenylsulfonyl) amino]-3-phenyl- propionic acid, an MMP-2/MMP-9 inhibitor (5 mg/kg), minimized gap formation after Gal/ET and Gal/TNF treatment. The MMP inhibitor reduced injury only in the Gal/ET model mainly due to reduced TNF formation. The MMP inhibitor attenuated sinusoidal neutrophil accumulation at 6 h but failed to attenuate Gal/TNF-induced liver injury at 7 h due to excessive apoptosis. These results suggest that Gal/ET or Gal/TNF activates MMPs, which are responsible for SEC gap formation. Although the initial appearance of gap formation is independent of neutrophils, the gaps allow initial contact of neutrophils with damaged hepatocytes. In addition, MMP activation promotes neutrophil accumulation in sinusoids.
AB - Neutrophil extravasation from sinusoids is a critical step for acute inflammatory tissue injury. However, the role of sinusoidal endothelial cells (SECs) in this process remains unclear. Matrix metalloproteinases (MMPs) have been shown to involve gap formation in SECs in several liver diseases. Therefore, the present study examined SEC modifications elicited by galactosamine (Gal)/endotoxin (ET). Treatment of male C3Heb/FeJ mice with Gal/ET or Gal/TNF caused the formation of numerous gaps in SECs at 4 h when no neutrophil extravasation occurred. Six hours after Gal/ET or Gal/TNF treatment, blood elements started to penetrate to the extrasinusoidal space through large gaps. Treatment with ET alone caused sinusoidal neutrophil accumulation but no gap formation, neutrophil extravasation, or hemorrhage. Gal/ET treatment increased hepatic MMP-2 and MMP-9 mRNA expression (6.7- and 11-fold, respectively). Pretreatment with 2-[(4-biphenylsulfonyl) amino]-3-phenyl- propionic acid, an MMP-2/MMP-9 inhibitor (5 mg/kg), minimized gap formation after Gal/ET and Gal/TNF treatment. The MMP inhibitor reduced injury only in the Gal/ET model mainly due to reduced TNF formation. The MMP inhibitor attenuated sinusoidal neutrophil accumulation at 6 h but failed to attenuate Gal/TNF-induced liver injury at 7 h due to excessive apoptosis. These results suggest that Gal/ET or Gal/TNF activates MMPs, which are responsible for SEC gap formation. Although the initial appearance of gap formation is independent of neutrophils, the gaps allow initial contact of neutrophils with damaged hepatocytes. In addition, MMP activation promotes neutrophil accumulation in sinusoids.
KW - Apoptosis
KW - Matrix metalloproteinase
KW - Neutrophil
KW - Transmigration
KW - Tumor necrosis factor
UR - http://www.scopus.com/inward/record.url?scp=33745777182&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745777182&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00312.2005
DO - 10.1152/ajpgi.00312.2005
M3 - Article
C2 - 16574994
AN - SCOPUS:33745777182
SN - 0193-1857
VL - 291
SP - G211-G218
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 2
ER -