Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS)

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown

Research output: Contribution to journalArticlepeer-review

119 Scopus citations


Improving estimates of carbon inventories in soils is currently hindered by lack of a rapid analysis method for total soil carbon. A rapid, accurate, and precise method that could be used in the field would be a significant benefit to researchers investigating carbon cycling in soils and dynamics of soil carbon in global change processes. We tested a new analysis method for predicting total soil carbon using laser-induced breakdown spectroscopy (LIBS). We determined appropriate spectral signatures and calibrated the method using measurements from dry combustion of a Mollisol from a cultivated plot. From this calibration curve we predicted carbon concentrations in additional samples from the same soil and from an Alfisol collected in a semiarid woodland and compared these predictions with additional dry combustion measurements. Our initial tests suggest that the LIBS method rapidly and efficiently measures soil carbon with excellent detection limits (∼300 mg/kg), precision (4-5%), and accuracy (3-14%). Initial testing shows that LIBS measurements and dry combustion analyses are highly correlated (adjusted r2 = 0.96) for soils of distinct morphology, and that a sample can be analyzed by LIBS in less than one minute. The LIBS method is readily adaptable to a field-portable instrument, and this attribute-in combination with rapid and accurate sample analysis-suggests that this new method offers promise for improving measurement of total soil carbon. Additional testing of LIBS is required to understand the effects of soil properties such as texture, moisture content, and mineralogical composition (i.e., silicon content) on LIBS measurements.

Original languageEnglish (US)
Pages (from-to)2202-2206
Number of pages5
JournalJournal of Environmental Quality
Issue number6
StatePublished - 2001

ASJC Scopus subject areas

  • Environmental Engineering
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS)'. Together they form a unique fingerprint.

Cite this