TY - GEN
T1 - Maximizing the coverage of information propagation in social networks
AU - Wang, Zhefeng
AU - Chen, Enhong
AU - Liu, Qi
AU - Yang, Yu
AU - Ge, Yong
AU - Chang, Biao
PY - 2015
Y1 - 2015
N2 - Social networks, due to their popularity, have been studied extensively these years. A rich body of these studies is related to influence maximization, which aims to select a set of seed nodes for maximizing the expected number of active nodes at the end of the process. However, the set of active nodes can not fully represent the true coverage of information propagation. A node may be informed of the information when any of its neighbours become active and try to activate it, though this node (namely informed node) is still inactive. Therefore, we need to consider both active nodes and informed nodes that are aware of the information when we study the coverage of information propagation in a network. Along this line, in this paper we propose a new problem called Information Coverage Maximization that aims to maximize the expected number of both active nodes and informed ones. After we prove that this problem is NP-hard and submodular in the independent cascade model, we design two algorithms to solve it. Extensive experiments on three real-world data sets demonstrate the performance of the proposed algorithms.
AB - Social networks, due to their popularity, have been studied extensively these years. A rich body of these studies is related to influence maximization, which aims to select a set of seed nodes for maximizing the expected number of active nodes at the end of the process. However, the set of active nodes can not fully represent the true coverage of information propagation. A node may be informed of the information when any of its neighbours become active and try to activate it, though this node (namely informed node) is still inactive. Therefore, we need to consider both active nodes and informed nodes that are aware of the information when we study the coverage of information propagation in a network. Along this line, in this paper we propose a new problem called Information Coverage Maximization that aims to maximize the expected number of both active nodes and informed ones. After we prove that this problem is NP-hard and submodular in the independent cascade model, we design two algorithms to solve it. Extensive experiments on three real-world data sets demonstrate the performance of the proposed algorithms.
UR - http://www.scopus.com/inward/record.url?scp=84949779170&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949779170&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84949779170
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 2104
EP - 2110
BT - IJCAI 2015 - Proceedings of the 24th International Joint Conference on Artificial Intelligence
A2 - Wooldridge, Michael
A2 - Yang, Qiang
PB - International Joint Conferences on Artificial Intelligence
T2 - 24th International Joint Conference on Artificial Intelligence, IJCAI 2015
Y2 - 25 July 2015 through 31 July 2015
ER -