Mass-Metallicity Trends in Transiting Exoplanets from Atmospheric Abundances of H2O, Na, and K

Luis Welbanks, Nikku Madhusudhan, Nicole F. Allard, Ivan Hubeny, Fernand Spiegelman, Thierry Leininger

Research output: Contribution to journalArticlepeer-review

153 Scopus citations

Abstract

Atmospheric compositions can provide powerful diagnostics of formation and migration histories of planetary systems. We investigate constraints on atmospheric abundances of H2O, Na, and K, in a sample of transiting exoplanets using the latest transmission spectra and new H2 broadened opacities of Na and K. Our sample of 19 exoplanets spans from cool mini-Neptunes to hot Jupiters, with equilibrium temperatures between ∼300 and 2700 K. Using homogeneous Bayesian retrievals we report atmospheric abundances of Na, K, and H2O, and their detection significances, confirming 6 planets with strong Na detections, 6 with K, and 14 with H2O. We find a mass-metallicity trend of increasing H2O abundances with decreasing mass, spanning generally substellar values for gas giants and stellar/superstellar for Neptunes and mini-Neptunes. However, the overall trend in H2O abundances, from mini-Neptunes to hot Jupiters, is significantly lower than the mass-metallicity relation for carbon in the solar system giant planets and similar predictions for exoplanets. On the other hand, the Na and K abundances for the gas giants are stellar or superstellar, consistent with each other, and generally consistent with the solar system metallicity trend. The H2O abundances in hot gas giants are likely due to low oxygen abundances relative to other elements rather than low overall metallicities, and provide new constraints on their formation mechanisms. The differing trends in the abundances of species argue against the use of chemical equilibrium models with metallicity as one free parameter in atmospheric retrievals, as different elements can be differently enhanced.

Original languageEnglish (US)
Article numberL20
JournalAstrophysical Journal Letters
Volume887
Issue number1
DOIs
StatePublished - Dec 10 2019

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Mass-Metallicity Trends in Transiting Exoplanets from Atmospheric Abundances of H2O, Na, and K'. Together they form a unique fingerprint.

Cite this