TY - JOUR
T1 - Mapping the Stellar Halo with the H3 Spectroscopic Survey
AU - Conroy, Charlie
AU - Bonaca, Ana
AU - Cargile, Phillip
AU - Johnson, Benjamin D.
AU - Caldwell, Nelson
AU - Naidu, Rohan P.
AU - Zaritsky, Dennis
AU - Fabricant, Daniel
AU - Moran, Sean
AU - Rhee, Jaehyon
AU - Szentgyorgyi, Andrew
AU - Berlind, Perry
AU - Calkins, Michael L.
AU - Kattner, Shianne
AU - Ly, Chun
N1 - Publisher Copyright:
© 2019. The American Astronomical Society. All rights reserved..
PY - 2019/9/20
Y1 - 2019/9/20
N2 - Modern theories of galaxy formation predict that the Galactic stellar halo was hierarchically assembled from the accretion and disruption of smaller systems. This hierarchical assembly is expected to produce a high degree of structure in the combined phase and chemistry space; this structure should provide a relatively direct probe of the accretion history of our Galaxy. Revealing this structure requires precise 3D positions (including distances), 3D velocities, and chemistry for large samples of stars. The Gaia satellite is delivering proper motions and parallaxes for >1 billion stars to G ≈ 20. However, radial velocities and metallicities will only be available to G ≈ 15, which is insufficient to probe the outer stellar halo (⪆10 kpc). Moreover, parallaxes will not be precise enough to deliver high-quality distances for stars beyond ∼10 kpc. Identifying accreted systems throughout the stellar halo therefore requires a large ground-based spectroscopic survey to complement Gaia. Here we provide an overview of the H3 Stellar Spectroscopic Survey, which will deliver precise stellar parameters and spectrophotometric distances for ≈200,000 stars to r = 18. Spectra are obtained with the Hectochelle instrument at the MMT, which is configured for the H3 Survey to deliver resolution R ≈ 23,000 spectra covering the wavelength range 5150-5300 Å. The survey is optimized for stellar halo science and therefore focuses on high Galactic latitude fields (), sparsely sampling 15,000 sq. degrees. Targets are selected on the basis of Gaia parallaxes, enabling very efficient selection of bona fide halo stars. The survey began in the fall of 2017 and has collected 88,000 spectra to-date. All of the data, including the derived stellar parameters, will eventually be made publicly available via the survey website: h3survey.rc.fas.harvard.edu.
AB - Modern theories of galaxy formation predict that the Galactic stellar halo was hierarchically assembled from the accretion and disruption of smaller systems. This hierarchical assembly is expected to produce a high degree of structure in the combined phase and chemistry space; this structure should provide a relatively direct probe of the accretion history of our Galaxy. Revealing this structure requires precise 3D positions (including distances), 3D velocities, and chemistry for large samples of stars. The Gaia satellite is delivering proper motions and parallaxes for >1 billion stars to G ≈ 20. However, radial velocities and metallicities will only be available to G ≈ 15, which is insufficient to probe the outer stellar halo (⪆10 kpc). Moreover, parallaxes will not be precise enough to deliver high-quality distances for stars beyond ∼10 kpc. Identifying accreted systems throughout the stellar halo therefore requires a large ground-based spectroscopic survey to complement Gaia. Here we provide an overview of the H3 Stellar Spectroscopic Survey, which will deliver precise stellar parameters and spectrophotometric distances for ≈200,000 stars to r = 18. Spectra are obtained with the Hectochelle instrument at the MMT, which is configured for the H3 Survey to deliver resolution R ≈ 23,000 spectra covering the wavelength range 5150-5300 Å. The survey is optimized for stellar halo science and therefore focuses on high Galactic latitude fields (), sparsely sampling 15,000 sq. degrees. Targets are selected on the basis of Gaia parallaxes, enabling very efficient selection of bona fide halo stars. The survey began in the fall of 2017 and has collected 88,000 spectra to-date. All of the data, including the derived stellar parameters, will eventually be made publicly available via the survey website: h3survey.rc.fas.harvard.edu.
KW - Galaxy: halo
KW - Galaxy: kinematics and dynamics
UR - http://www.scopus.com/inward/record.url?scp=85073149493&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073149493&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab38b8
DO - 10.3847/1538-4357/ab38b8
M3 - Article
AN - SCOPUS:85073149493
SN - 0004-637X
VL - 883
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 107
ER -