Mapping Dark Matter with Extragalactic Stellar Streams: The Case of Centaurus A

Sarah Pearson, Adrian M. Price-Whelan, David W. Hogg, Anil C. Seth, David J. Sand, Jason A.S. Hunt, Denija Crnojević

Research output: Contribution to journalArticlepeer-review

Abstract

In the coming decade, thousands of stellar streams will be observed in the halos of external galaxies. What fundamental discoveries will we make about dark matter from these streams? As a first attempt to look at these questions, we model Magellan/Megacam imaging of the Centaurus A (Cen A) disrupting dwarf companion Dwarf 3 (Dw3) and its associated stellar stream, to find out what can be learned about the Cen A dark matter halo. We develop a novel external galaxy stream-fitting technique and generate model stellar streams that reproduce the stream morphology visible in the imaging. We find that there are many viable stream models that fit the data well, with reasonable parameters, provided that Cen A has a halo mass larger than M 200 > 4.70 × 1012 M . There is a second stream in Cen A’s halo that is also reproduced within the context of this same dynamical model. However, stream morphology in the imaging alone does not uniquely determine the mass or mass distribution for the Cen A halo. In particular, the stream models with high likelihood show covariances between the inferred Cen A mass distribution, the inferred Dw3 progenitor mass, the Dw3 velocity, and the Dw3 line-of-sight position. We show that these degeneracies can be broken with radial-velocity measurements along the stream, and that a single radial velocity measurement puts a substantial lower limit on the halo mass. These results suggest that targeted radial-velocity measurements will be critical if we want to learn about dark matter from extragalactic stellar streams.

Original languageEnglish (US)
Article number19
JournalAstrophysical Journal
Volume941
Issue number1
DOIs
StatePublished - Dec 1 2022

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Mapping Dark Matter with Extragalactic Stellar Streams: The Case of Centaurus A'. Together they form a unique fingerprint.

Cite this