Abstract
Neuromotor deficits are an important sign of manganese (Mn) toxicity in humans and laboratory animals. However, the impacts of Mn exposure on the motor function of wild animals remains largely unknown. Here, we assessed the impact of chronic exposure to Mn from active mining operations on Groote Eylandt, Australia on the motor function of the semi-arboreal northern quoll (Dasyurus hallucatus), an endangered species. The three motor tests conducted—maximum sprint speed on a straight run, manoeuvrability around a corner, and motor control on a balance beam—showed that elevated Mn body burden did not diminish performance of these traits. However, quolls with higher Mn body burden approached a corner at a significantly narrower range of speeds, due to a significantly lower maximum approach speed. Slower speeds approaching a turn may reduce success at catching prey and avoiding predators. Given that maximum sprint speed on a straight run was not affected by Mn body burden, but maximum speed entering a corner was, slower speeds approaching a turn may reflect compensation for otherwise impaired performance in the turn.
Original language | English (US) |
---|---|
Pages (from-to) | 55-62 |
Number of pages | 8 |
Journal | Environmental Pollution |
Volume | 241 |
DOIs | |
State | Published - Oct 2018 |
Externally published | Yes |
Keywords
- Balance beam
- Dasyurid
- Ecotoxicology
- Locomotor
- Maneuverability
- Marsupial
- Movement
- Neurotoxic metal
- Sprint speed
- Wildlife
ASJC Scopus subject areas
- Toxicology
- Pollution
- Health, Toxicology and Mutagenesis