Making good use of JWST's coronagraphs: Tools and strategies from a user's perspective

Julien H. Girard, William Blair, Brian Brooks, Keira Brooks, Robert Brown, Howard Bushouse, Alicia Canipe, Christine Chen, Matteo Correnti, J. Brendan Hagan, Bryan Hilbert, Dean Hines, Jarron Leisenring, Joseph Long, Bryony Nickson, Marshall D. Perrin, Klaus Pontoppidan, Laurent Pueyo, Abhijith Rajan, Adric RiedelRemi Soummer, John Stansberry, Christopher Stark, Kyle Van Gorkom, Brian York

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations


The James Webb Space Telescope (JWST) and its suite of instruments, modes and high contrast capabilities will enable imaging and characterization of faint and dusty astrophysical sources1-3 (exoplanets, proto-planetary and debris disks, dust shells, etc.) in the vicinity of hosts (stars of all sorts, active galactic nuclei, etc.) with an unprecedented combination of sensitivity and angular resolution at wavelengths beyond 2 μm. Two of its four instruments, NIRCam4, 5 and MIRI,6 feature coronagraphs7, 8 for wavelengths from 2 to 23 μm. JWST will stretch the current parameter space (contrast at a given separation) towards the infrared with respect to the Hubble Space Telescope (HST) and in sensitivity with respect to what is currently achievable from the ground with the best adaptive optics (AO) facilities. The Coronagraphs Working Group at the Space Telescope Science Institute (STScI) along with the Instruments Teams and internal/external partners coordinates efforts to provide the community with the best possible preparation tools, documentation, pipelines, etc. Here we give an update on user support and operational aspects related to coronagraphy. We aim at demonstrating an end to end observing strategy and data management chain for a few science use cases involving coronagraphs. This includes the choice of instrument modes as well as the observing and point-spread function (PSF) subtraction strategies (e.g. visibility, reference stars selection tools, small grid dithers), the design of the proposal with the Exposure Time Calculator (ETC), and the Astronomer's Proposal Tool (APT), the generation of realistic simulated data at small working angles and the generation of high level, science-grade data products enabling calibration and state of the art data-processing.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2018
Subtitle of host publicationOptical, Infrared, and Millimeter Wave
EditorsGiovanni G. Fazio, Howard A. MacEwen, Makenzie Lystrup
ISBN (Print)9781510619494
StatePublished - 2018
EventSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave - Austin, United States
Duration: Jun 10 2018Jun 15 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave
Country/TerritoryUnited States


  • Coronagraphy
  • Exoplanets
  • High contrast imaging
  • JWST
  • MIRI
  • NIRCam
  • User support

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Making good use of JWST's coronagraphs: Tools and strategies from a user's perspective'. Together they form a unique fingerprint.

Cite this