Machine Learning Based MIMO Equalizer for High Frequency (HF) Communications

Samuel Spillane, Kristopher H. Jung, Kate Bowers, Ture Peken, Michael H. Marefat, Tamal Bose

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Utilization of multiple-input multiple-output (MIMO) systems as a means of increasing channel capacity has been an area of increasing consideration in radio communications. However, less study has been devoted to MIMO in the high-frequency band. This research is important because high-frequency communication using MIMO allows for international communication at long distances using lower power consumption than many other approaches. The inter-symbol interference caused by the selective fading of multiple received signals and the randomness of the ionospheric conditions means there is a need for a novel solution. The purpose of this research is to introduce two machine learning approaches that can adaptively apply equalization algorithms to address fading and optimize equalization parameters. The novelty of our approach lies in two main factors. The first is that our approach allows for a software-defined radio to switch equalization algorithms depending on conditions during run-time. The second is that we optimize this selected algorithm further by using two machine-learning approaches. The first proposed cognitive engine model, which utilizes a genetic algorithm, demonstrates the validity and advantage of using a cognitive engine to select optimal equalization parameters at the receiver under the problems created by utilizing the high-frequency band. This approach acts as a comparison for our second. We then propose a second cognitive engine, the adaptive manipulator, which optimizes not only by selecting equalization parameters but also continually changes the equalization algorithm. Finally, we compare the performance of the proposed cognitive engine models with state-of-the-art algorithms.

Original languageEnglish (US)
Title of host publication2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728169262
DOIs
StatePublished - Jul 2020
Event2020 International Joint Conference on Neural Networks, IJCNN 2020 - Virtual, Glasgow, United Kingdom
Duration: Jul 19 2020Jul 24 2020

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2020 International Joint Conference on Neural Networks, IJCNN 2020
Country/TerritoryUnited Kingdom
CityVirtual, Glasgow
Period7/19/207/24/20

Keywords

  • Equalization
  • Genetic Algorithm
  • HF Communications
  • MIMO
  • Q-learning
  • Reinforcement Learning

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Machine Learning Based MIMO Equalizer for High Frequency (HF) Communications'. Together they form a unique fingerprint.

Cite this