TY - GEN
T1 - MAC Aware Quantization for Distributed Gradient Descent
AU - Chang, Wei Ting
AU - Tandon, Ravi
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/12
Y1 - 2020/12
N2 - In this work, we study the problem of federated learning (FL), where distributed users aim to jointly train a machine learning model with the help of a parameter server (PS). In each iteration of FL, users compute local gradients, followed by transmission of the quantized gradients for subsequent aggregation and model updates at PS. One of the challenges of FL is that of communication overhead due to FL's iterative nature and large model sizes. One recent direction to alleviate communication bottleneck in FL is to let users communicate simultaneously over a multiple access channel (MAC), possibly making better use of the communication resources.In this paper, we consider the problem of FL over a MAC. We focus on the design of digital gradient transmission schemes over a MAC, where gradients at each user are first quantized, and then transmitted over a MAC to be decoded individually at the PS. When designing digital FL schemes over MACs, there are new opportunities to assign different amount of resources (e.g., rate or bandwidth) to different users based on a) the informativeness of the gradients at users, and b) the underlying channel conditions. We propose a stochastic gradient quantization scheme, where the quantization parameters are optimized based on the capacity region of the MAC. We show that such channel aware quantization} for FL outperforms uniform quantization, particularly when users experience different channel conditions, and when have gradients with varying levels of informativeness.
AB - In this work, we study the problem of federated learning (FL), where distributed users aim to jointly train a machine learning model with the help of a parameter server (PS). In each iteration of FL, users compute local gradients, followed by transmission of the quantized gradients for subsequent aggregation and model updates at PS. One of the challenges of FL is that of communication overhead due to FL's iterative nature and large model sizes. One recent direction to alleviate communication bottleneck in FL is to let users communicate simultaneously over a multiple access channel (MAC), possibly making better use of the communication resources.In this paper, we consider the problem of FL over a MAC. We focus on the design of digital gradient transmission schemes over a MAC, where gradients at each user are first quantized, and then transmitted over a MAC to be decoded individually at the PS. When designing digital FL schemes over MACs, there are new opportunities to assign different amount of resources (e.g., rate or bandwidth) to different users based on a) the informativeness of the gradients at users, and b) the underlying channel conditions. We propose a stochastic gradient quantization scheme, where the quantization parameters are optimized based on the capacity region of the MAC. We show that such channel aware quantization} for FL outperforms uniform quantization, particularly when users experience different channel conditions, and when have gradients with varying levels of informativeness.
UR - http://www.scopus.com/inward/record.url?scp=85100438280&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100438280&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM42002.2020.9322254
DO - 10.1109/GLOBECOM42002.2020.9322254
M3 - Conference contribution
AN - SCOPUS:85100438280
T3 - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
BT - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Global Communications Conference, GLOBECOM 2020
Y2 - 7 December 2020 through 11 December 2020
ER -