Lysocardiolipin acyltransferase regulates TGF-β mediated lung fibroblast differentiation

Long Shuang Huang, Peiyue Jiang, Carol Feghali-Bostwick, Sekhar P. Reddy, Joe G.N. Garcia, Viswanathan Natarajan

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


Lysocardiolipin acyltransferase (LYCAT), a cardiolipin remodeling enzyme, plays a key role in mitochondrial function and vascular development. We previously reported that reduced LYCAT mRNA levels in peripheral blood mononuclear cells correlated with poor pulmonary function outcomes and decreased survival in IPF patients. Further LYCAT overexpression reduced lung fibrosis, and LYCAT knockdown accentuated experimental pulmonary fibrosis. NADPH Oxidase 4 (NOX4) expression and oxidative stress are known to contribute to lung fibroblast differentiation and progression of fibrosis. In this study, we investigated the role of LYCAT in TGF-β mediated differentiation of human lung fibroblasts to myofibroblasts, and whether this occurred through mitochondrial superoxide and NOX4 mediated hydrogen peroxide (H2O2) generation. Our data indicated that LYCAT expression was up-regulated in primary lung fibroblasts isolated from IPF patients and bleomycin-challenged mice, compared to controls. In vitro, siRNA-mediated SMAD3 depletion inhibited TGF-β stimulated LYCAT expression in human lung fibroblasts. ChIP immunoprecipitation assay revealed TGF-β stimulated SMAD2/3 binding to the endogenous LYCAT promoter, and mutation of the SMAD2/3 binding sites (−179/−183 and −540/−544) reduced TGF-β-stimulated LYCAT promoter activity. Overexpression of LYCAT attenuated TGF-β-induced mitochondrial and intracellular oxidative stress, NOX4 expression and differentiation of human lung fibroblasts. Further, pretreatment with Mito-TEMPO, a mitochondrial superoxide scavenger, blocked TGF-β-induced mitochondrial superoxide, NOX4 expression and differentiation of human lung fibroblasts. Treatment of human lung fibroblast with NOX1/NOX4 inhibitor, GKT137831, also attenuated TGF-β induced fibroblast differentiation and mitochondrial oxidative stress. Collectively, these results suggest that LYCAT is a negative regulator of TGF-β-induced lung fibroblast differentiation by modulation of mitochondrial superoxide and NOX4 dependent H2O2 generation, and this may serve as a potential therapeutic target for human lung fibrosis.

Original languageEnglish (US)
Pages (from-to)162-173
Number of pages12
JournalFree Radical Biology and Medicine
StatePublished - Nov 2017


  • Fibroblast differentiation
  • Mitochondrial oxidative stress
  • Pulmonary fibrosis
  • TGF-β

ASJC Scopus subject areas

  • Biochemistry
  • Physiology (medical)


Dive into the research topics of 'Lysocardiolipin acyltransferase regulates TGF-β mediated lung fibroblast differentiation'. Together they form a unique fingerprint.

Cite this