Lunar surface and buried rock abundance retrieved from chang'E-2 microwave and diviner data

Guangfei Wei, Shane Byrne, Xiongyao Li, Guoping Hu

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Microwave emission of the Moon, measured by the Chang'E-2 Microwave Radiometer (MRM), provides an effective way to understand the physical properties of lunar near-surface materials. The observed microwave brightness temperature is affected by near-surface temperatures, which are controlled by the surface albedo, roughness, regolith thermophysical properties, and the high thermal inertia and permittivity of both surface and buried rocks. In this study, we propose a rock model using thermal infrared measurements from the Lunar Reconnaissance Orbiter's (LRO) Diviner as surface temperature constraints. We then retrieve the volumetric rock abundance (RA) from nighttime MRM data at several rocky areas. Although our retrieved MRM RA cannot be compared to the rock concentration measured with LRO Camera images directly, there is a good agreement with Diviner-derived RA and radar observations. The extent of several geological units, including rocky craters, hummocky regions, and impact melts, agree well with the distribution of elevated rock concentration. Based on seven large craters with published model ages, we present an inverse correlation between rock concentration and crater age. The result shows that the rock concentration decreases with crater age rapidly within 1 Ga but declines slowly after that. These data are consistent with a short survival time for exposed rocks and a long lifetime for buried rocks that are shielded from lunar surface processes.

Original languageEnglish (US)
Article number56
JournalPlanetary Science Journal
Volume1
Issue number3
DOIs
StatePublished - Dec 2020

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Geophysics

Fingerprint

Dive into the research topics of 'Lunar surface and buried rock abundance retrieved from chang'E-2 microwave and diviner data'. Together they form a unique fingerprint.

Cite this