LUMIO: Characterizing lunar meteoroid impacts with a CubeSat

F. Topputo, M. Massari, J. Biggs, P. Di Lizia, D. A. Dei Tos, K. V. Mani, S. Ceccherini, V. Franzese, A. Cervone, P. Sundaramoorthy, S. Speretta, S. Mestry, R. Noomen, A. Ivanov, D. Labate, A. Jochemsen, R. Furfaro, V. Reddy, K. Jacquinot, R. WalkerJ. Vennekens, A. Cipriano, D. Koschny

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

The Lunar Meteoroid Impact Observer (LUMIO) is a mission designed to observe, quantify, and characterize the meteoroid impacts by detecting their flashes on the lunar farside. Earth-based lunar observations are restricted by weather, geometric, and illumination conditions, while a lunar orbiter can improve the detection rate of lunar meteoroid impact flashes, as it would allow for longer monitoring periods. This paper presents the scientific mission of LUMIO, designed for the ESA SysNova LUCE competition, that resulted as the ex-aequo winner in the competition. LUMIO, a 12U CubeSat weighting approximately 20 kg, is expected to be deployed into a quasi-polar selenocentric orbit by a mother spacecraft, which also acts as communication relay. From a lunar high-inclination orbit, LUMIO will autonomously determine its trajectory to reach the Moon-Earth L2 point and perform the cruise phase. From the operative orbit, LUMIO will observe the lunar farside. When the lunar disk illumination is less than 50%, LUMIO autonomously performs the scientific task without direct coordination from Earth. Fully autonomous operations will include science, communication, and navigation. A similar concept can be re-used for a wide variety of future missions. The scientific mission will also be possible thanks to an innovative on-board data processing system, capable of drastically reducing the information to transmit to Earth. The camera, designed to capture the flashes and measure their intensity is, in fact, capable of generating 2.6 TB/day while only approximately 1 MB/day will need to be transmitted to Earth. Impact identification will be autonomous and only relevant information will be transmitted. A study at the ESA/ESTEC concurrent design facility has shown evidence of feasibility and that a CubeSat orbiting along an Earth-Moon L2 quasi-halo orbit is expected to bring a relevant contribution to lunar science and innovation to space exploration.

Original languageEnglish (US)
JournalProceedings of the International Astronautical Congress, IAC
Volume2018-October
StatePublished - 2018
Event69th International Astronautical Congress: #InvolvingEveryone, IAC 2018 - Bremen, Germany
Duration: Oct 1 2018Oct 5 2018

Keywords

  • CubeSat
  • ESA SysNova challenge
  • Earth-Moon L2
  • LUMIO
  • Lunar Situational Awareness
  • Meteoroid impact flash

ASJC Scopus subject areas

  • Aerospace Engineering
  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'LUMIO: Characterizing lunar meteoroid impacts with a CubeSat'. Together they form a unique fingerprint.

Cite this