TY - GEN
T1 - Low-thrust trajectory design using closed-loop feedback-driven control laws and state-dependent parameters
AU - Holt, Harry
AU - Armellin, Roberto
AU - Scorsoglio, Andrea
AU - Furfaro, Roberto
N1 - Publisher Copyright:
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Low-thrust many-revolution trajectory design and orbit transfers are becoming increasingly important with the development of high specific impulse, low-thrust engines. Closed-loop feedback-driven (CLFD) control laws can be used to solve these trajectory design problems with minimal computational cost and offer potential for autonomous guidance. However, they have user-defined parameters which limit their optimality. In this work, an actor-critic reinforcement learning framework is proposed to make the parameters of the Lyapunov-based Q-law state-dependent, ensuring the controller can adapt as the dynamics evolve during a transfer. The proposed framework should be independent of the particular CLFD control law and provides improved solutions for mission analysis. There is also potential for future on-board autonomous use, as trajectories are closed-form and can be generated without an initial guess. The current results focus on GTO-GEO transfers in Keplerian dynamics and later with eclipse and J2 effects. Both time-optimal and mass-optimal transfers are presented, and the stability to uncertainties in orbit determination are discussed. The task of handling orbit perturbations is left to future work.
AB - Low-thrust many-revolution trajectory design and orbit transfers are becoming increasingly important with the development of high specific impulse, low-thrust engines. Closed-loop feedback-driven (CLFD) control laws can be used to solve these trajectory design problems with minimal computational cost and offer potential for autonomous guidance. However, they have user-defined parameters which limit their optimality. In this work, an actor-critic reinforcement learning framework is proposed to make the parameters of the Lyapunov-based Q-law state-dependent, ensuring the controller can adapt as the dynamics evolve during a transfer. The proposed framework should be independent of the particular CLFD control law and provides improved solutions for mission analysis. There is also potential for future on-board autonomous use, as trajectories are closed-form and can be generated without an initial guess. The current results focus on GTO-GEO transfers in Keplerian dynamics and later with eclipse and J2 effects. Both time-optimal and mass-optimal transfers are presented, and the stability to uncertainties in orbit determination are discussed. The task of handling orbit perturbations is left to future work.
UR - http://www.scopus.com/inward/record.url?scp=85091400330&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091400330&partnerID=8YFLogxK
U2 - 10.2514/6.2020-1694
DO - 10.2514/6.2020-1694
M3 - Conference contribution
AN - SCOPUS:85091400330
SN - 9781624105951
T3 - AIAA Scitech 2020 Forum
BT - AIAA Scitech 2020 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Scitech Forum, 2020
Y2 - 6 January 2020 through 10 January 2020
ER -