TY - JOUR
T1 - Low insulin-like growth factor binding protein-2 expression is responsible for increased insulin receptor substrate-1 phosphorylation in mesangial cells from mice susceptible to glomerulosclerosis
AU - Fornoni, Alessia
AU - Rosenzweig, Steven A.
AU - Lenz, Oliver
AU - Rivera, Ana
AU - Striker, Gary E.
AU - Elliot, Sharon J.
PY - 2006
Y1 - 2006
N2 - Mesangial cells (MC) isolated from glomerulosclerosis-prone ragged, olygosyndactilism, pintail (ROP) mice retain a stable phenotype after exposure to elevated glucose concentrations, whereas MC from glomerulosclerosis-resistant C57BL/6 (C) mice do not. In NOD and db/db mice, the stable phenotype induced by diabetes consists of autocrine activation of the IGF-I signaling pathway. We hypothesized that high ambient glucose activates the IGF-I pathway in ROP but not in C MC. MC were propagated in either 6 or 25 mM glucose. Isolated murine glomeruli were used to confirm in vitro experiments. 25 mM glucose induced increased insulin receptor substrate (IRS)-1 phosphorylation in ROP but not C MC. However, IGF-I, IGF-I receptor, and IRS-1 protein levels were induced by exposure to 25 mM glucose in both cell lines. This occurred without a change in IGF-I binding sites, suggesting a role for IGF binding protein (IGFBP). ROP MC and glomeruli expressed less IGFBP-2 than C MC and glomeruli. Addition of exogenous IGFBP-2 partially blunted the effect of 25 mM glucose on IRS-1 phosphorylation in ROP MC. Renal biopsies from patients with diabetic nephropathy also showed markedly decreased IGFBP-2 expression when compared with patients without nephropathy. In summary, glucose induces IRS-1 phosphorylation in MC isolated from ROP mice susceptible to glomerulosclerosis. IGFBP-2 expression was low in ROP MC and glomeruli from patients with diabetic nephropathy, suggesting that this may represent a new marker of susceptibility to diabetic nephropathy. Finally, addition of exogenous IGFBP-2 in ROP MC partially blunted the effect of high glucose on IRS-1 phosphorylation and might have a protective role.
AB - Mesangial cells (MC) isolated from glomerulosclerosis-prone ragged, olygosyndactilism, pintail (ROP) mice retain a stable phenotype after exposure to elevated glucose concentrations, whereas MC from glomerulosclerosis-resistant C57BL/6 (C) mice do not. In NOD and db/db mice, the stable phenotype induced by diabetes consists of autocrine activation of the IGF-I signaling pathway. We hypothesized that high ambient glucose activates the IGF-I pathway in ROP but not in C MC. MC were propagated in either 6 or 25 mM glucose. Isolated murine glomeruli were used to confirm in vitro experiments. 25 mM glucose induced increased insulin receptor substrate (IRS)-1 phosphorylation in ROP but not C MC. However, IGF-I, IGF-I receptor, and IRS-1 protein levels were induced by exposure to 25 mM glucose in both cell lines. This occurred without a change in IGF-I binding sites, suggesting a role for IGF binding protein (IGFBP). ROP MC and glomeruli expressed less IGFBP-2 than C MC and glomeruli. Addition of exogenous IGFBP-2 partially blunted the effect of 25 mM glucose on IRS-1 phosphorylation in ROP MC. Renal biopsies from patients with diabetic nephropathy also showed markedly decreased IGFBP-2 expression when compared with patients without nephropathy. In summary, glucose induces IRS-1 phosphorylation in MC isolated from ROP mice susceptible to glomerulosclerosis. IGFBP-2 expression was low in ROP MC and glomeruli from patients with diabetic nephropathy, suggesting that this may represent a new marker of susceptibility to diabetic nephropathy. Finally, addition of exogenous IGFBP-2 in ROP MC partially blunted the effect of high glucose on IRS-1 phosphorylation and might have a protective role.
UR - http://www.scopus.com/inward/record.url?scp=33745165624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745165624&partnerID=8YFLogxK
U2 - 10.1210/en.2006-0066
DO - 10.1210/en.2006-0066
M3 - Article
C2 - 16556765
AN - SCOPUS:33745165624
SN - 0013-7227
VL - 147
SP - 3547
EP - 3554
JO - Endocrinology
JF - Endocrinology
IS - 7
ER -