TY - JOUR
T1 - Low extreme-ultraviolet luminosities impinging on protoplanetary disks
AU - Pascucci, I.
AU - Ricci, L.
AU - Gorti, U.
AU - Hollenbach, D.
AU - Hendler, N. P.
AU - Brooks, K. J.
AU - Contreras, Y.
N1 - Publisher Copyright:
© 2014. The American Astronomical Society. All rights reserved.
PY - 2014/11/1
Y1 - 2014/11/1
N2 - The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (∼2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 1042 photons s-1 for all sources without jets and lower than 5 × 1040 photons s-1 for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.
AB - The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (∼2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 1042 photons s-1 for all sources without jets and lower than 5 × 1040 photons s-1 for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.
KW - Protoplanetary disks
KW - Radio continuum: stars
KW - Stars: pre-main sequence
UR - http://www.scopus.com/inward/record.url?scp=84908025708&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908025708&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/795/1/1
DO - 10.1088/0004-637X/795/1/1
M3 - Article
AN - SCOPUS:84908025708
SN - 0004-637X
VL - 795
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 1
ER -