Long-Term Warming Decreases Redox Capacity of Soil Organic Matter

Rachelle E. Lacroix, Nicolas Walpen, Michael Sander, Malak M. Tfaily, Jeffrey L. Blanchard, Marco Keiluweit

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Globally rising temperatures increase microbial activity, accelerating decomposition of soil organic matter (SOM). SOM has numerous functional capabilities, of which the capacity to engage in reduction-oxidation reactions (or redox capacity) affects nearly all soil biogeochemical processes. How warming-induced microbial decomposition affects the redox capacity of SOM and its functional role in biogeochemical processes is largely unknown. We examined the impact of 15 years of in situ soil warming on the redox capacities of water-extractable organic matter (WEOM). Combining mediated electrochemical analysis with high-resolution mass spectrometry, we assessed the molecular basis for changes in the redox capacities of WEOM within heated (5°C above ambient) and non-heated organic and mineral temperate forest soils. Chronic soil warming significantly decreased both concentrations and inherent electron-accepting and -donating capacities of WEOM, particularly in the mineral soil. This decline was best explained by decreases in the relative abundance of aromatic and phenolic compounds, suggesting that enhanced microbial decomposition of redox-active moieties caused the decrease in redox capacity. Our findings suggest that global warming not only diminishes the size of the soil carbon reservoir but might also negatively alter the ability of SOM to participate in critical redox processes such as microbial respiration, nutrient cycling, or contaminant degradation.

Original languageEnglish (US)
Pages (from-to)92-97
Number of pages6
JournalEnvironmental Science and Technology Letters
Volume8
Issue number1
DOIs
StatePublished - Jan 12 2021

ASJC Scopus subject areas

  • Environmental Chemistry
  • Ecology
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Long-Term Warming Decreases Redox Capacity of Soil Organic Matter'. Together they form a unique fingerprint.

Cite this