Abstract
Currently about 60% of all biosolids are land applied in the United States. The long-term influence of land application has been questioned due to public concern over potential hazards. The objective of this study is to evaluate the influence of land application of Class B biosolids on the soil chemical properties by analysis of depth (0-150 cm) soil samples collected 9 months after the 20th annual land application. The study showed that land application of Class B biosolids had no significant long-term effect on soil pH and CaCO 3. However, land application significantly increased soil macro-nutrients (C, N and P). Soil nitrate values in plots that received biosolids or inorganic fertilizer amendments were high indicating the potential for groundwater contamination. In addition, total and available soil P concentrations increased to values above that necessary for plant growth but P values attenuated to background levels at a soil depth of 150 cm. Total metal concentrations attenuated rapidly with increasing soil depth, and were generally similar to values found in control soils at a depth of 150 cm. Application of biosolids for nonfood agricultural crop production at this arid southwest site seems to be sustainable with respect to soil chemical entities.
Original language | English (US) |
---|---|
Pages (from-to) | 51-61 |
Number of pages | 11 |
Journal | Journal of Residuals Science and Technology |
Volume | 7 |
Issue number | 1 |
State | Published - Jan 2010 |
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- Waste Management and Disposal