Long-Term Culture of Individual Caenorhabditis elegans on Solid Media for Longitudinal Fluorescence Monitoring and Aversive Interventions

Luis Espejo, Bradford Hull, Leah M. Chang, Destiny Denicola, Samuel Freitas, Vanessa Silbar, Anne Haskins, Emily A. Turner, George L. Sutphin

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Caenorhabditis elegans are widely used to study aging biology. The standard practice in C. elegans aging studies is to culture groups of worms on solid nematode growth media (NGM), allowing the efficient collection of population-level data for survival and other physiological phenotypes, and periodic sampling of subpopulations for fluorescent biomarker quantification. Limitations to this approach are the inability to (1) follow individual worms over time to develop age trajectories for phenotypes of interest and (2) monitor fluorescent biomarkers directly in the context of the culture environment. Alternative culture approaches use liquid culture or microfluidics to monitor individual animals over time, in some cases including fluorescence quantification, with the tradeoff that the culture environment is contextually distinct from solid NGM. The WorMotel is a previously described microfabricated multi-well device for culturing isolated worms on solid NGM. Each worm is maintained in a well containing solid NGM surrounded by a moat filled with copper sulfate, a contact repellent for C. elegans, allowing longitudinal monitoring of individual animals. We find copper sulfate insufficient to prevent worms from fleeing when subjected to aversive interventions common in aging research, including dietary restriction, pathogenic bacteria, and chemical agents that induce cellular stress. The multi-well devices are also molded from polydimethylsiloxane, which produces high background artifacts in fluorescence imaging. This protocol describes a new approach for culturing isolated roundworms on solid NGM using commercially available polystyrene microtrays, originally designed for human leukocyte antigen (HLA) typing, allowing the measurement of survival, physiological phenotypes, and fluorescence across the lifespan. A palmitic acid barrier prevents worms from fleeing, even in the presence of aversive conditions. Each plate can culture up to 96 animals and easily adapts to a variety of conditions, including dietary restriction, RNAi, and chemical additives, and is compatible with automated systems for collecting lifespan and activity data.

Original languageEnglish (US)
Article numbere64682
JournalJournal of Visualized Experiments
Issue number190
StatePublished - Dec 2022

ASJC Scopus subject areas

  • General Neuroscience
  • General Chemical Engineering
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology


Dive into the research topics of 'Long-Term Culture of Individual Caenorhabditis elegans on Solid Media for Longitudinal Fluorescence Monitoring and Aversive Interventions'. Together they form a unique fingerprint.

Cite this