Logarithmic complexity sensitivity analysis of flexible multibody systems

Kishor D. Bhalerao, Mohammad Poursina, Kurt S. Anderson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a recursive direct differentiation method for sensitivity analysis of flexible multibody systems. Large rotations and translations in the system are modeled as rigid body degrees of freedom while the deformation field within each body is approximated by superposition of modal shape functions. The equations of motion for the flexible members are differentiated at body level and the sensitivity information is generated via a recursive divide and conquer scheme. The number of differentiations required in this method is minimal. The method works concurrently with the forward dynamics simulation of the system and requires minimum data storage. The use of divide and conquer framework makes the method linear and logarithmic in complexity for serial and parallel implementation, respectively, and ideally suited for general topologies. The method is applied to a flexible two arm robotic manipulator to calculate sensitivity information and the results are compared with the finite difference approach.

Original languageEnglish (US)
Title of host publicationASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009
Pages1833-1836
Number of pages4
EditionPARTS A, B AND C
DOIs
StatePublished - 2009
Externally publishedYes
EventASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009 - San Diego, CA, United States
Duration: Aug 30 2009Sep 2 2009

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
NumberPARTS A, B AND C
Volume4

Conference

ConferenceASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009
Country/TerritoryUnited States
CitySan Diego, CA
Period8/30/099/2/09

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Logarithmic complexity sensitivity analysis of flexible multibody systems'. Together they form a unique fingerprint.

Cite this