TY - JOUR
T1 - Localizing Transformations of the Galaxy-Galaxy Lensing Observable
AU - Park, Youngsoo
AU - Rozo, Eduardo
AU - Krause, Elisabeth
N1 - Publisher Copyright:
© 2021 American Physical Society.
PY - 2021/1/13
Y1 - 2021/1/13
N2 - Modern cosmological analyses of galaxy-galaxy lensing face a theoretical systematic effect arising from the nonlocality of the observed galaxy-galaxy lensing signal. Because the predicted tangential shear signal at a given separation depends on the physical modeling on all scales internal to that separation, systematic uncertainties in the modeling of nonlinear small scales are propagated outward to larger scales. Even in the absence of other limiting factors, this systematic effect alone can necessitate conservative small-scale cuts, resulting in significant losses of information in the tangential shear data vector. We construct a simple linear transformation of the standard galaxy-galaxy observable that removes this nonlocality, which ensures that the cosmological signal contained within the transformed observable is exclusively drawn from well-understood physical scales. This new observable, through its robustness against nonlocality, also enables a significant extension in the range of usable scales in galaxy-galaxy lensing compared to the standard approach in current cosmological analyses.
AB - Modern cosmological analyses of galaxy-galaxy lensing face a theoretical systematic effect arising from the nonlocality of the observed galaxy-galaxy lensing signal. Because the predicted tangential shear signal at a given separation depends on the physical modeling on all scales internal to that separation, systematic uncertainties in the modeling of nonlinear small scales are propagated outward to larger scales. Even in the absence of other limiting factors, this systematic effect alone can necessitate conservative small-scale cuts, resulting in significant losses of information in the tangential shear data vector. We construct a simple linear transformation of the standard galaxy-galaxy observable that removes this nonlocality, which ensures that the cosmological signal contained within the transformed observable is exclusively drawn from well-understood physical scales. This new observable, through its robustness against nonlocality, also enables a significant extension in the range of usable scales in galaxy-galaxy lensing compared to the standard approach in current cosmological analyses.
UR - http://www.scopus.com/inward/record.url?scp=85099629347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099629347&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.126.021301
DO - 10.1103/PhysRevLett.126.021301
M3 - Article
C2 - 33512211
AN - SCOPUS:85099629347
SN - 0031-9007
VL - 126
JO - Physical review letters
JF - Physical review letters
IS - 2
M1 - 021301
ER -