Localizing Transformations of the Galaxy-Galaxy Lensing Observable

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Modern cosmological analyses of galaxy-galaxy lensing face a theoretical systematic effect arising from the nonlocality of the observed galaxy-galaxy lensing signal. Because the predicted tangential shear signal at a given separation depends on the physical modeling on all scales internal to that separation, systematic uncertainties in the modeling of nonlinear small scales are propagated outward to larger scales. Even in the absence of other limiting factors, this systematic effect alone can necessitate conservative small-scale cuts, resulting in significant losses of information in the tangential shear data vector. We construct a simple linear transformation of the standard galaxy-galaxy observable that removes this nonlocality, which ensures that the cosmological signal contained within the transformed observable is exclusively drawn from well-understood physical scales. This new observable, through its robustness against nonlocality, also enables a significant extension in the range of usable scales in galaxy-galaxy lensing compared to the standard approach in current cosmological analyses.

Original languageEnglish (US)
Article number021301
JournalPhysical review letters
Issue number2
StatePublished - Jan 13 2021

ASJC Scopus subject areas

  • General Physics and Astronomy


Dive into the research topics of 'Localizing Transformations of the Galaxy-Galaxy Lensing Observable'. Together they form a unique fingerprint.

Cite this