Localization of listric faults at thrust fault ramps beneath the Great Salt Lake Basin, Utah: Evidence from seismic imaging and finite element modeling

Gopal K. Mohapatra, Roy A. Johnson

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Reflection seismic data from the Great Salt Lake Basin, Utah, show that the major basin-bounding normal faults decrease in dip from ∼60° at the surface to ∼10°-20° at depths as shallow as 4-6 km. This rapid decrease in fault dip at depths shallower than the brittle-ductile transition zone in the Basin and Range Province suggests an explanation other than a gradual change of rheology and stress orientations with depth. Using a dense grid of seismic data, gravity data, borehole data, and published geologic information from islands in the lake, we constrain the position of the Sevier age Willard thrust and a footwall imbricate and show their reactivation as normal faults during Tertiary extension. In the absence of surface geologic information, we use available subsurface information from the lake to draw an analogy with the Ogden duplex in the Wasatch Front, where Cenozoic normal faulting was superimposed on an earlier Sevier age thrust regime to give rise to listric normal faults. Our interpretations are consistent with finite element modeling results, which demonstrate that extensional slip on preexisting thrust ramps leads to the formation of energetically favored synthetic normal faults, some of which may merge with the thrust ramp and obtain listric geometries. Further slip on these listric faults gives rise to secondary synthetic and antithetic faults resulting in hanging wall grabens.

Original languageEnglish (US)
Pages (from-to)10047-10063
Number of pages17
JournalJournal of Geophysical Research: Solid Earth
Volume103
Issue number5
DOIs
StatePublished - May 10 1998
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Localization of listric faults at thrust fault ramps beneath the Great Salt Lake Basin, Utah: Evidence from seismic imaging and finite element modeling'. Together they form a unique fingerprint.

Cite this