LINNA: Likelihood Inference Neural Network Accelerator

Chun Hao To, Eduardo Rozo, Elisabeth Krause, Hao Yi Wu, Risa H Wechsler, Andrés N Salcedo

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Bayesian posterior inference of modern multi-probe cosmological analyses incurs massive computational costs. For instance, depending on the combinations of probes, a single posterior inference for the Dark Energy Survey (DES) data had a wall-clock time that ranged from 1 to 21 days using a state-of-the-art computing cluster with 100 cores. These computational costs have severe environmental impacts and the long wall-clock time slows scientific productivity. To address these difficulties, we introduce LINNA: the Likelihood Inference Neural Network Accelerator. Relative to the baseline DES analyses, LINNA reduces the computational cost associated with posterior inference by a factor of 8-50. If applied to the first-year cosmological analysis of Rubin Observatory's Legacy Survey of Space and Time (LSST Y1), we conservatively estimate that LINNA will save more than U.S. $300,000 on energy costs, while simultaneously reducing CO2 emission by 2,400 tons. To accomplish these reductions, LINNA automatically builds training data sets, creates neural network emulators, and produces a Markov chain that samples the posterior. We explicitly verify that LINNA accurately reproduces the first-year DES (DES Y1) cosmological constraints derived from a variety of different data vectors with our default code settings, without needing to retune the algorithm every time. Further, we find that LINNA is sufficient for enabling accurate and efficient sampling for LSST Y10 multi-probe analyses. We make LINNA publicly available at, to enable others to perform fast and accurate posterior inference in contemporary cosmological analyses.

Original languageEnglish (US)
Article number016
JournalJournal of Cosmology and Astroparticle Physics
Issue number1
StatePublished - Jan 1 2023


  • Bayesian reasoning
  • Machine learning
  • Statistical sampling techniques
  • cosmological parameters from LSS

ASJC Scopus subject areas

  • Astronomy and Astrophysics


Dive into the research topics of 'LINNA: Likelihood Inference Neural Network Accelerator'. Together they form a unique fingerprint.

Cite this