Linear and non-linear analysis of composite plates using guided acoustic waves

H. Alnuaimi, U. Amjad, P. Russo, V. Lopresto, T. Kundu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Guided acoustic wave techniques have been found to be very effective for damage detection. In this investigation Lead Zirconate Titanate (PZT) transducers are used to generate guided acoustic waves for structural health monitoring of a variety of composite specimens. Multiple sets of composite plate specimens are inspected for impact induced damage detection using PZT transducers. Composite samples are divided into two groups for comparative studies i.e. glass fiber composites and basalt fiber composites. They are damaged by impactors having different levels of impact energy. A chirp signal is excited and propagated through the specimens in a single sided excitation/detection setup to investigate the damages induced by impacts of varying intensity. Signal processing of the recorded signals for damage analysis involved both linear and nonlinear analyses. Linear ultrasonic analysis such as change in the time-of-flight of the propagating waves, Fast Fourier Transform and S-Transform of the recorded signals were tried out while the nonlinear ultrasonic analysis involved the Sideband Peak Count or the SPC technique.

Original languageEnglish (US)
Title of host publicationHealth Monitoring of Structural and Biological Systems XIII
EditorsPaul Fromme, Zhongqing Su
PublisherSPIE
ISBN (Electronic)9781510625990
DOIs
StatePublished - 2019
EventHealth Monitoring of Structural and Biological Systems XIII 2019 - Denver, United States
Duration: Mar 4 2019Mar 7 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10972
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceHealth Monitoring of Structural and Biological Systems XIII 2019
Country/TerritoryUnited States
CityDenver
Period3/4/193/7/19

Keywords

  • Damage detection
  • Fast Fourier Transform (FFT)
  • Guided ultrasonic waves
  • Lead Zirconate Titanate (PZT)
  • Non-Destructive Testing (NDT)
  • S-Transform (ST)
  • Side band peak count (SPC)
  • Time of flight (TOF)

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Linear and non-linear analysis of composite plates using guided acoustic waves'. Together they form a unique fingerprint.

Cite this