Line of Sight Curvature for Missile Guidance using Reinforcement Meta-Learning

Brian Gaudet, Roberto Furfaro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We use reinforcement meta learning to optimize a line of sight curvature policy that increases the effectiveness of a guidance system against maneuvering targets. The policy is implemented as a recurrent neural network that maps navigation system outputs to a Euler 321 attitude representation. The attitude representation is then used to construct a direction cosine matrix that biases the observed line of sight vector. The line of sight rotation rate derived from the biased line of sight is then mapped to a commanded acceleration by the guidance system. By varying the bias as a function of navigation system outputs, the policy enhances accuracy against highly maneuvering targets. Importantly, our method does not require an estimate of target acceleration. In our experiments, we demonstrate that when our method is combined with proportional navigation, the system significantly outperforms augmented proportional navigation with perfect knowledge of target acceleration, achieving improved accuracy with less control effort against a wide range of target maneuvers.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum and Exposition, 2023
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624106996
DOIs
StatePublished - 2023
EventAIAA SciTech Forum and Exposition, 2023 - Orlando, United States
Duration: Jan 23 2023Jan 27 2023

Publication series

NameAIAA SciTech Forum and Exposition, 2023

Conference

ConferenceAIAA SciTech Forum and Exposition, 2023
Country/TerritoryUnited States
CityOrlando
Period1/23/231/27/23

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Line of Sight Curvature for Missile Guidance using Reinforcement Meta-Learning'. Together they form a unique fingerprint.

Cite this