Leveraging Codebook Knowledge with NLI and ChatGPT for Zero-Shot Political Relation Classification

Yibo Hu, Erick Skorupa Parolin, Latifur Khan, Patrick T. Brandt, Javier Osorio, Vito J. D'Orazio

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Is it possible accurately classify political relations within evolving event ontologies without extensive annotations? This study investigates zero-shot learning methods that use expert knowledge from existing annotation codebook, and evaluates the performance of advanced ChatGPT (GPT-3.5/4) and a natural language inference (NLI)-based model called ZSP. ChatGPT uses codebook's labeled summaries as prompts, whereas ZSP breaks down the classification task into context, event mode, and class disambiguation to refine task-specific hypotheses. This decomposition enhances interpretability, efficiency, and adaptability to schema changes. The experiments reveal ChatGPT's strengths and limitations, and crucially show ZSP's outperformance of dictionary-based methods and its competitive edge over some supervised models. These findings affirm the value of ZSP for validating event records and advancing ontology development. Our study underscores the efficacy of leveraging transfer learning and existing domain expertise to enhance research efficiency and scalability. The code is publicly available.

Original languageEnglish (US)
Title of host publicationLong Papers
EditorsLun-Wei Ku, Andre F. T. Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages583-603
Number of pages21
ISBN (Electronic)9798891760943
StatePublished - 2024
Event62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand
Duration: Aug 11 2024Aug 16 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityBangkok
Period8/11/248/16/24

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Leveraging Codebook Knowledge with NLI and ChatGPT for Zero-Shot Political Relation Classification'. Together they form a unique fingerprint.

Cite this