Lettuce calcium deficiency detection with machine vision computed plant features in controlled environments

David Story, Murat Kacira, Chieri Kubota, Ali Akoglu, Lingling An

Research output: Contribution to journalArticlepeer-review

110 Scopus citations


Conventional greenhouse environmental conditions are determined by observation. However, destructive or invasive contact measurements are not practical for real-time monitoring and control applications. At the canopy scale, machine vision has the potential to identify emerging stresses and guide sampling for identification of the stressor. A machine vision-guided plant sensing and monitoring system was used to detect calcium deficiency in lettuce crops grown in greenhouse conditions using temporal, color and morphological changes of the plant. The machine vision system consisted of two main components: a robotic camera positioning system and an image processing module. The machine vision system extracted plant features to determine overall plant growth and health status, including top projected canopy area (TPCA) as a morphological feature; red-green-blue (RGB) and hue-saturation-luminance (HSL) values as color features; and entropy, energy, contrast, and homogeneity as textural features. The machine vision-guided system was capable of extracting plant morphological, textural and temporal features autonomously. The methodology developed was capable of identifying calcium-deficient lettuce plants 1 day prior to visual stress detection by human vision. Of the extracted plant features, TPCA, energy, entropy, and homogeneity were the most promising markers for timely detection of calcium deficiency in the lettuce crop studied.

Original languageEnglish (US)
Pages (from-to)238-243
Number of pages6
JournalComputers and Electronics in Agriculture
Issue number2
StatePublished - Nov 2010


  • Image processing
  • Lettuce
  • Machine vision
  • Nutrient deficiency
  • Real-time crop monitoring

ASJC Scopus subject areas

  • Forestry
  • Agronomy and Crop Science
  • Computer Science Applications
  • Horticulture


Dive into the research topics of 'Lettuce calcium deficiency detection with machine vision computed plant features in controlled environments'. Together they form a unique fingerprint.

Cite this