Leiomodin-dysfunction results in thin filament disorganization and nemaline myopathy

Michaela Yuen, Sarah A. Sandaradura, James J. Dowling, Alla S. Kostyukova, Natalia Moroz, Kate G. Quinlan, Vilma Lotta Lehtokari, Gianina Ravenscroft, Emily J. Todd, Ozge Ceyhan-Birsoy, David S. Gokhin, Jérome Maluenda, Monkol Lek, Flora Nolent, Christopher T. Pappas, Stefanie M. Novak, Adele D'Amico, Edoardo Malfatti, Brett P. Thomas, Stacey B. GabrielNamrata Gupta, Mark J. Daly, Biljana Ilkovski, Peter J. Houweling, Ann E. Davidson, Lindsay C. Swanson, Catherine A. Brownstein, Vandana A. Gupta, Livija Medne, Patrick Shannon, Nicole Martin, David P. Bick, Anders Flisberg, Eva Holmberg, Peter Van Den Bergh, Pablo Lapunzina, Leigh B. Waddell, Darcée D. Sloboda, Enrico Bertini, David Chitayat, William R. Telfer, Annie Laquerrière, Carol C. Gregorio, Coen A.C. Ottenheijm, Carsten G. Bönnemann, Katarina Pelin, Alan H. Beggs, Yukiko K. Hayashi, Norma B. Romero, Nigel G. Laing, Ichizo Nishino, Carina Wallgren-Pettersson, Judith Melki, Velia M. Fowler, Daniel G. MacArthur, Kathryn N. North, Nigel F. Clarke

Research output: Contribution to journalArticlepeer-review

139 Scopus citations


Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle.

Original languageEnglish (US)
Pages (from-to)4693-4708
Number of pages16
JournalJournal of Clinical Investigation
Issue number11
StatePublished - Nov 3 2014

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Leiomodin-dysfunction results in thin filament disorganization and nemaline myopathy'. Together they form a unique fingerprint.

Cite this