TY - JOUR
T1 - Latitude-dependent Atmospheric Waves and Long-period Modulations in Luhman 16 B from the Longest Light Curve of an Extrasolar World
AU - Fuda, Nguyen
AU - Apai, Dániel
AU - Nardiello, Domenico
AU - Tan, Xianyu
AU - Karalidi, Theodora
AU - Bedin, Luigi Rolly
N1 - Publisher Copyright:
© 2024. The Author(s). Published by the American Astronomical Society.
PY - 2024/4/1
Y1 - 2024/4/1
N2 - In this work, we present the longest photometric monitoring of up to 1200 hr of the strongly variable brown dwarf binaries Luhman 16 AB and provide evidence of ±5% variability on a timescale of several to hundreds of hours for this object. We show that short-period rotational modulation around 5 hr (k = 1 wavenumber) and 2.5 hr (k = 2 wavenumber) dominate the variability under 10 hr, where the planetary-scale wave model composed of k = 1 and k = 2 waves provides good fits to both the periodograms and light curve. In particular, models consisting of three to four sine waves could explain the variability of the light-curve durations up to 100 hr. We show that the relative range of the k = 2 periods is narrower compared to the k = 1 periods. Using simple models of zonal banding in solar system giants, we suggest that the difference in period range arises from the difference in wind-speed distribution at low and mid-to-high latitudes in the atmosphere. Last, we show that Luhman 16 AB also exhibits long-period ±5% variability, with periods ranging from 15 hr up to 100 hr over the longest monitoring of this object. Our results for the k = 1 and k = 2 waves and long-period evolution are consistent with previous 3D atmosphere simulations, demonstrating that both latitude-dependent waves and slow-varying atmospheric features are potentially present in Luhman 16 AB atmospheres and are a significant contribution to the light-curve modulation over hundreds of rotations.
AB - In this work, we present the longest photometric monitoring of up to 1200 hr of the strongly variable brown dwarf binaries Luhman 16 AB and provide evidence of ±5% variability on a timescale of several to hundreds of hours for this object. We show that short-period rotational modulation around 5 hr (k = 1 wavenumber) and 2.5 hr (k = 2 wavenumber) dominate the variability under 10 hr, where the planetary-scale wave model composed of k = 1 and k = 2 waves provides good fits to both the periodograms and light curve. In particular, models consisting of three to four sine waves could explain the variability of the light-curve durations up to 100 hr. We show that the relative range of the k = 2 periods is narrower compared to the k = 1 periods. Using simple models of zonal banding in solar system giants, we suggest that the difference in period range arises from the difference in wind-speed distribution at low and mid-to-high latitudes in the atmosphere. Last, we show that Luhman 16 AB also exhibits long-period ±5% variability, with periods ranging from 15 hr up to 100 hr over the longest monitoring of this object. Our results for the k = 1 and k = 2 waves and long-period evolution are consistent with previous 3D atmosphere simulations, demonstrating that both latitude-dependent waves and slow-varying atmospheric features are potentially present in Luhman 16 AB atmospheres and are a significant contribution to the light-curve modulation over hundreds of rotations.
UR - http://www.scopus.com/inward/record.url?scp=85191011473&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85191011473&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ad2c84
DO - 10.3847/1538-4357/ad2c84
M3 - Article
AN - SCOPUS:85191011473
SN - 0004-637X
VL - 965
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 182
ER -