TY - GEN
T1 - Latent-variable Private Information Retrieval
AU - Samy, Islam
AU - Attia, Mohamed A.
AU - Tandon, Ravi
AU - Lazos, Loukas
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/6
Y1 - 2020/6
N2 - In many applications, content accessed by users (movies, videos, news articles, etc.) can leak sensitive latent attributes, such as religious and political views, sexual orientation, ethnicity, gender, and others. To prevent such information leakage, the goal of classical PIR is to hide the identity of the content/message being accessed, which subsequently also hides the latent attributes. This solution, while private, can be too costly, particularly, when perfect (information-theoretic) privacy constraints are imposed. For instance, for a single database holding K messages, privately retrieving one message is possible if and only if the user downloads the entire database of K messages. Retrieving content privately, however, may not be necessary to perfectly hide the latent attributes.Motivated by the above, we formulate and study the problem of latent-variable private information retrieval (LV-PIR), which aims at allowing the user efficiently retrieve one out of K messages (indexed by θ) without revealing any information about the latent variable (modeled by S). We focus on the practically relevant setting of a single database and show that one can significantly reduce the download cost of LV-PIR (compared to the classical PIR) based on the correlation between θ and S. We present a general scheme for LV-PIR as a function of the statistical relationship between θ and S, and also provide new results on the capacity/download cost of LV-PIR. Several open problems and new directions are also discussed.
AB - In many applications, content accessed by users (movies, videos, news articles, etc.) can leak sensitive latent attributes, such as religious and political views, sexual orientation, ethnicity, gender, and others. To prevent such information leakage, the goal of classical PIR is to hide the identity of the content/message being accessed, which subsequently also hides the latent attributes. This solution, while private, can be too costly, particularly, when perfect (information-theoretic) privacy constraints are imposed. For instance, for a single database holding K messages, privately retrieving one message is possible if and only if the user downloads the entire database of K messages. Retrieving content privately, however, may not be necessary to perfectly hide the latent attributes.Motivated by the above, we formulate and study the problem of latent-variable private information retrieval (LV-PIR), which aims at allowing the user efficiently retrieve one out of K messages (indexed by θ) without revealing any information about the latent variable (modeled by S). We focus on the practically relevant setting of a single database and show that one can significantly reduce the download cost of LV-PIR (compared to the classical PIR) based on the correlation between θ and S. We present a general scheme for LV-PIR as a function of the statistical relationship between θ and S, and also provide new results on the capacity/download cost of LV-PIR. Several open problems and new directions are also discussed.
UR - http://www.scopus.com/inward/record.url?scp=85090408842&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090408842&partnerID=8YFLogxK
U2 - 10.1109/ISIT44484.2020.9174451
DO - 10.1109/ISIT44484.2020.9174451
M3 - Conference contribution
AN - SCOPUS:85090408842
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 1071
EP - 1076
BT - 2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE International Symposium on Information Theory, ISIT 2020
Y2 - 21 July 2020 through 26 July 2020
ER -