TY - JOUR
T1 - Lagrangian large eddy simulations via physics-informed machine learning
AU - Tian, Yifeng
AU - Woodward, Michael
AU - Stepanov, Mikhail
AU - Fryer, Chris
AU - Hyett, Criston
AU - Livescu, Daniel
AU - Chertkov, Michael
N1 - Publisher Copyright:
© 2023 the Author(s).
PY - 2023
Y1 - 2023
N2 - High-Reynolds number homogeneous isotropic turbulence (HIT) is fully described within the Navier-Stokes (NS) equations, which are notoriously difficult to solve numerically. Engineers, interested primarily in describing turbulence at a reduced range of resolved scales, have designed heuristics, known as large eddy simulation (LES). LES is described in terms of the temporally evolving Eulerian velocity field defined over a spatial grid with the mean-spacing correspondent to the resolved scale. This classic Eulerian LES depends on assumptions about effects of subgrid scales on the resolved scales. Here, we take an alternative approach and design LES heuristics stated in terms of Lagrangian particles moving with the flow. Our Lagrangian LES, thus LLES, is described by equations generalizing the weakly compressible smoothed particle hydrodynamics formulation with extended parametric and functional freedom, which is then resolved via Machine Learning training on Lagrangian data from direct numerical simulations of the NS equations. The L-LES model includes physics-informed parameterization and functional form, by combining physics-based parameters and physics-inspired Neural Networks to describe the evolution of turbulence within the resolved range of scales. The subgrid-scale contributions are modeled separately with physical constraints to account for the effects from unresolved scales. We build the resulting model under the differentiable programming framework to facilitate efficient training. We experiment with loss functions of different types, including physicsinformed ones accounting for statistics of Lagrangian particles. We show that our L-LES model is capable of reproducing Eulerian and unique Lagrangian turbulence structures and statistics over a range of turbulent Mach numbers.
AB - High-Reynolds number homogeneous isotropic turbulence (HIT) is fully described within the Navier-Stokes (NS) equations, which are notoriously difficult to solve numerically. Engineers, interested primarily in describing turbulence at a reduced range of resolved scales, have designed heuristics, known as large eddy simulation (LES). LES is described in terms of the temporally evolving Eulerian velocity field defined over a spatial grid with the mean-spacing correspondent to the resolved scale. This classic Eulerian LES depends on assumptions about effects of subgrid scales on the resolved scales. Here, we take an alternative approach and design LES heuristics stated in terms of Lagrangian particles moving with the flow. Our Lagrangian LES, thus LLES, is described by equations generalizing the weakly compressible smoothed particle hydrodynamics formulation with extended parametric and functional freedom, which is then resolved via Machine Learning training on Lagrangian data from direct numerical simulations of the NS equations. The L-LES model includes physics-informed parameterization and functional form, by combining physics-based parameters and physics-inspired Neural Networks to describe the evolution of turbulence within the resolved range of scales. The subgrid-scale contributions are modeled separately with physical constraints to account for the effects from unresolved scales. We build the resulting model under the differentiable programming framework to facilitate efficient training. We experiment with loss functions of different types, including physicsinformed ones accounting for statistics of Lagrangian particles. We show that our L-LES model is capable of reproducing Eulerian and unique Lagrangian turbulence structures and statistics over a range of turbulent Mach numbers.
KW - Lagrangian particles
KW - large eddy simulation
KW - physics-informed machine learning
KW - turbulence modeling
UR - http://www.scopus.com/inward/record.url?scp=85168285324&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85168285324&partnerID=8YFLogxK
U2 - 10.1073/pnas.2213638120
DO - 10.1073/pnas.2213638120
M3 - Article
C2 - 37585463
AN - SCOPUS:85168285324
SN - 0027-8424
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 34
M1 - e2213638120
ER -