TY - JOUR
T1 - Kinetic and Continuum Modeling of High-Temperature Oxygen and Nitrogen Binary Mixtures
AU - Gimelshein, Sergey F.
AU - Wysong, Ingrid J.
AU - Fangman, Alexander J.
AU - Andrienko, Daniil A.
AU - Kunova, Olga V.
AU - Kustova, Elena V.
AU - Garbacz, Catarina
AU - Fossati, Marco
AU - Hanquist, Kyle
N1 - Funding Information:
The work at U.S. Air Force Research Laboratory was supported by the U.S. Air Force Office of Scientific Research (Program Officers Ivett Leyva and Sarah Popkin). The work of O. Kunova and E. Kustova was supported by the Russian Science Foundation, project 19-11-00041.
Publisher Copyright:
© AIAA International. All rights reserved.
PY - 2022
Y1 - 2022
N2 - The present paper provides a comprehensive comparative analysis of thermochemistry models of various fidelity levels developed in leading research groups around the world. Fully kinetic, hybrid kinetic–continuum, and fully continuum approaches are applied to analyze parameters of hypersonic flows starting from the revision of single-temperature rate constants up to the application in 1-D postshock conditions. Comparison of state-specific and two-temperature approaches shows there are very significant and often qualitative differences in the time-dependent nonequilibrium reaction rates and their ratio to the corresponding single-temperature rates. A major impact of the vibration–dissociation coupling on the temporal relaxation of gas properties is shown. For instance, the legacy Park’s model has a strongly nonlinear behavior of nonequilibrium reaction rate with vibrational temperature, while a nearly linear shape exists for all state-specific approaches. Analysis of vibrational level populations in the nonequilibrium region shows a profound impact of the numerical approach and the model on the population ratios, and thus vibrational temperatures inferred from such ratios. The difference in the ultraviolet absorption coefficients, calculated by a temperature-based spectral code using vibrational populations from state-specific and kinetic approaches, is found to exceed an order of magnitude.
AB - The present paper provides a comprehensive comparative analysis of thermochemistry models of various fidelity levels developed in leading research groups around the world. Fully kinetic, hybrid kinetic–continuum, and fully continuum approaches are applied to analyze parameters of hypersonic flows starting from the revision of single-temperature rate constants up to the application in 1-D postshock conditions. Comparison of state-specific and two-temperature approaches shows there are very significant and often qualitative differences in the time-dependent nonequilibrium reaction rates and their ratio to the corresponding single-temperature rates. A major impact of the vibration–dissociation coupling on the temporal relaxation of gas properties is shown. For instance, the legacy Park’s model has a strongly nonlinear behavior of nonequilibrium reaction rate with vibrational temperature, while a nearly linear shape exists for all state-specific approaches. Analysis of vibrational level populations in the nonequilibrium region shows a profound impact of the numerical approach and the model on the population ratios, and thus vibrational temperatures inferred from such ratios. The difference in the ultraviolet absorption coefficients, calculated by a temperature-based spectral code using vibrational populations from state-specific and kinetic approaches, is found to exceed an order of magnitude.
UR - http://www.scopus.com/inward/record.url?scp=85127764350&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127764350&partnerID=8YFLogxK
U2 - 10.2514/1.T6258
DO - 10.2514/1.T6258
M3 - Article
AN - SCOPUS:85127764350
SN - 0887-8722
VL - 36
SP - 399
EP - 418
JO - Journal of Thermophysics and Heat Transfer
JF - Journal of Thermophysics and Heat Transfer
IS - 2
ER -