TY - JOUR
T1 - Kelch-like ECH-Associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2)
AU - Tian, Wang
AU - De La Vega, Montserrat Rojo
AU - Schmidlin, Cody J.
AU - Ooi, Aikseng
AU - Zhang, Donna D.
N1 - Publisher Copyright:
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2018/2/9
Y1 - 2018/2/9
N2 - Nuclear factor erythroid-2-related factor 1 (NRF1) and NRF2 are essential for maintaining redox homeostasis and coordinating cellular stress responses. They are highly homologous transcription factors that regulate the expression of genes bearing antioxidant-response elements (AREs). Genetic ablation of NRF1 or NRF2 results in vastly different phenotypic outcomes, implying that they play different roles and may be differentially regulated. Kelch-like ECH-Associated protein 1 (KEAP1) is the main negative regulator of NRF2 and mediates ubiquitylation and degradation of NRF2 through its NRF2-ECH homology- like domain 2 (Neh2). Here, we report that KEAP1 binds to the Neh2-like (Neh2L) domain of NRF1 and stabilizes it. Consistently, NRF1 is more stable in KEAP1+/+ than in KEAP1-/-isogenic cell lines, whereas NRF2 is dramatically stabilized in KEAP1-/-cells. Replacing NRF1's Neh2L domain with NRF2's Neh2 domain renders NRF1 sensitive to KEAP1-mediated degradation, indicating that the amino acids between the DLG and ETGE motifs, not just the motifs themselves, are essential for KEAP1-mediated degradation. Systematic site-directed mutagenesis identified the core amino acid residues required for KEAP1-mediated degradation and further indicated that the DLG and ETGE motifs with correct spacing are insufficient as a KEAP1 degron. Our results offer critical insights into our understanding of the differential regulation of NRF1 and NRF2 by KEAP1 and their different physiological roles.
AB - Nuclear factor erythroid-2-related factor 1 (NRF1) and NRF2 are essential for maintaining redox homeostasis and coordinating cellular stress responses. They are highly homologous transcription factors that regulate the expression of genes bearing antioxidant-response elements (AREs). Genetic ablation of NRF1 or NRF2 results in vastly different phenotypic outcomes, implying that they play different roles and may be differentially regulated. Kelch-like ECH-Associated protein 1 (KEAP1) is the main negative regulator of NRF2 and mediates ubiquitylation and degradation of NRF2 through its NRF2-ECH homology- like domain 2 (Neh2). Here, we report that KEAP1 binds to the Neh2-like (Neh2L) domain of NRF1 and stabilizes it. Consistently, NRF1 is more stable in KEAP1+/+ than in KEAP1-/-isogenic cell lines, whereas NRF2 is dramatically stabilized in KEAP1-/-cells. Replacing NRF1's Neh2L domain with NRF2's Neh2 domain renders NRF1 sensitive to KEAP1-mediated degradation, indicating that the amino acids between the DLG and ETGE motifs, not just the motifs themselves, are essential for KEAP1-mediated degradation. Systematic site-directed mutagenesis identified the core amino acid residues required for KEAP1-mediated degradation and further indicated that the DLG and ETGE motifs with correct spacing are insufficient as a KEAP1 degron. Our results offer critical insights into our understanding of the differential regulation of NRF1 and NRF2 by KEAP1 and their different physiological roles.
UR - http://www.scopus.com/inward/record.url?scp=85041959554&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041959554&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA117.000428
DO - 10.1074/jbc.RA117.000428
M3 - Article
C2 - 29255090
AN - SCOPUS:85041959554
SN - 0021-9258
VL - 293
SP - 2029
EP - 2040
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 6
ER -